On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 247-258.

We prove that there are finitely many perfect powers in elliptic divisibility sequences generated by a non-integral point on elliptic curves of the form y 2 =x(x 2 +b), where b is any positive integer. We achieve this by using the modularity of elliptic curves over real quadratic number fields.

Nous prouvons qu’il n’existe qu’un nombre fini de puissances parfaites dans les suites de divisibilité elliptiques générées par un point non entier sur une courbe elliptique de la forme y 2 =x(x 2 +b), où b est un entier positif non nul. Nous y parvenons en utilisant la modularité des courbes elliptiques sur les corps quadratiques réels.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1244
Classification: 11B83, 11D61, 11G05
Keywords: Modular methods, Elliptic divisibility sequences, Perfect powers
Abdulmuhsin Alfaraj 1

1 Department of Mathematical Sciences University of Bath Claverton Down Bath, BA2 7AY UK.
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2023__35_1_247_0,
     author = {Abdulmuhsin Alfaraj},
     title = {On the {Finiteness} of {Perfect} {Powers} in {Elliptic} {Divisibility} {Sequences}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {247--258},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     year = {2023},
     doi = {10.5802/jtnb.1244},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/}
}
TY  - JOUR
AU  - Abdulmuhsin Alfaraj
TI  - On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 247
EP  - 258
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/
DO  - 10.5802/jtnb.1244
LA  - en
ID  - JTNB_2023__35_1_247_0
ER  - 
%0 Journal Article
%A Abdulmuhsin Alfaraj
%T On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 247-258
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/
%R 10.5802/jtnb.1244
%G en
%F JTNB_2023__35_1_247_0
Abdulmuhsin Alfaraj. On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 247-258. doi : 10.5802/jtnb.1244. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/

[1] Don Blasius; Jonathan D. Rogawski Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl

[2] Wieb Bosma; John Cannon; Catherine Playoust The Magma Algebra System I: The User Language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[3] Yann Bugeaud; Maurice Mignotte; Samir Siksek Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., Volume 163 (2006) no. 3, pp. 969-1018 | DOI | MR | Zbl

[4] Henri Carayol Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 409-468 | DOI | MR | Zbl

[5] Henri Carayol Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J., Volume 59 (1989) no. 3, pp. 785-801 | MR | Zbl

[6] Henri Darmon Serre’s conjectures, Seminar on Fermat’s last theorem (CMS Conference Proceedings), Volume 17, American Mathematical Society, 1995, pp. 135-153 | MR | Zbl

[7] Fred Diamond; Jerry Shurman A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xv+436 pages

[8] Graham Everest; Helen King Prime powers in elliptic divisibility sequences, Math. Comput., Volume 74 (2005) no. 252, pp. 2061-2071 | DOI | MR | Zbl

[9] Graham Everest; Jonathan Reynolds; Shaun Stevens On the denominators of rational points on elliptic curves, Bull. Lond. Math. Soc., Volume 39 (2007) no. 5, pp. 762-770 | DOI | MR | Zbl

[10] Nuno Freitas; Bao V. Le Hung; Samir Siksek Elliptic Curves over Real Quadratic Fields are Modular, Invent. Math., Volume 201 (2015) no. 1, pp. 159-206 | DOI | MR | Zbl

[11] Nuno Freitas; Samir Siksek The Asymptotic Fermat’s Last Theorem for Five-Sixths of Real Quadratic Fields, Compos. Math., Volume 151 (2015), pp. 1395-1415 | DOI | MR | Zbl

[12] Nuno Freitas; Samir Siksek Criteria for irreducibility of mod p representations of Frey curves, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 1, pp. 67-76 | DOI | Numdam | MR | Zbl

[13] Kazuhiro Fujiwara Level optimisation in the totally real case (2006) (https://arxiv.org/abs/math/0602586v1)

[14] Patrick Ingram; Joseph H. Silverman Uniform estimates for primitive divisors in elliptic divisibility sequences, Number theory, analysis and geometry, Springer, 2012, pp. 243-271 | DOI | Zbl

[15] Frazer Jarvis Correspondences on Shimura curves and Mazur’s principle at p, Pac. J. Math., Volume 213 (2004) no. 2, pp. 267-280 | DOI | MR | Zbl

[16] Ron Livné Communication networks and Hilbert modular forms, Applications of algebraic geometry to coding theory, physics and computation (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 36, Kluwer Academic Publishers, 2001, pp. 255-270 | DOI | MR | Zbl

[17] Ali Rajaei On the levels of mod Hilbert modular forms, J. Reine Angew. Math., Volume 537 (2001), pp. 33-65 | MR | Zbl

[18] Jonathan Reynolds Perfect powers in elliptic divisibility sequences, J. Number Theory, Volume 132 (2012) no. 5, pp. 998-1015 | DOI | MR | Zbl

[19] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | DOI

[20] Joseph H. Silverman Wieferich’s criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988) no. 2, pp. 226-237

[21] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiii+525 pages

[22] Marco Streng Elliptic divisibility sequences with complex multiplication, 2006 (Master’s thesis, Universiteit Utrecht)

[23] Richard Taylor On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280

[24] Morgan Ward Memoir on elliptic divisibility sequences, Am. J. Math., Volume 70 (1948), pp. 31-74

[25] Andrew J. Wiles On ordinary λ-adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573

Cited by Sources: