We prove that there are finitely many perfect powers in elliptic divisibility sequences generated by a non-integral point on elliptic curves of the form , where is any positive integer. We achieve this by using the modularity of elliptic curves over real quadratic number fields.
Nous prouvons qu’il n’existe qu’un nombre fini de puissances parfaites dans les suites de divisibilité elliptiques générées par un point non entier sur une courbe elliptique de la forme , où est un entier positif non nul. Nous y parvenons en utilisant la modularité des courbes elliptiques sur les corps quadratiques réels.
Revised:
Accepted:
Published online:
Keywords: Modular methods, Elliptic divisibility sequences, Perfect powers

@article{JTNB_2023__35_1_247_0, author = {Abdulmuhsin Alfaraj}, title = {On the {Finiteness} of {Perfect} {Powers} in {Elliptic} {Divisibility} {Sequences}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {247--258}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1244}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/} }
TY - JOUR AU - Abdulmuhsin Alfaraj TI - On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 247 EP - 258 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/ DO - 10.5802/jtnb.1244 LA - en ID - JTNB_2023__35_1_247_0 ER -
%0 Journal Article %A Abdulmuhsin Alfaraj %T On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences %J Journal de théorie des nombres de Bordeaux %D 2023 %P 247-258 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/ %R 10.5802/jtnb.1244 %G en %F JTNB_2023__35_1_247_0
Abdulmuhsin Alfaraj. On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 247-258. doi : 10.5802/jtnb.1244. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1244/
[1] Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl
[2] The Magma Algebra System I: The User Language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[3] Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., Volume 163 (2006) no. 3, pp. 969-1018 | DOI | MR | Zbl
[4] Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 409-468 | DOI | MR | Zbl
[5] Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J., Volume 59 (1989) no. 3, pp. 785-801 | MR | Zbl
[6] Serre’s conjectures, Seminar on Fermat’s last theorem (CMS Conference Proceedings), Volume 17, American Mathematical Society, 1995, pp. 135-153 | MR | Zbl
[7] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xv+436 pages
[8] Prime powers in elliptic divisibility sequences, Math. Comput., Volume 74 (2005) no. 252, pp. 2061-2071 | DOI | MR | Zbl
[9] On the denominators of rational points on elliptic curves, Bull. Lond. Math. Soc., Volume 39 (2007) no. 5, pp. 762-770 | DOI | MR | Zbl
[10] Elliptic Curves over Real Quadratic Fields are Modular, Invent. Math., Volume 201 (2015) no. 1, pp. 159-206 | DOI | MR | Zbl
[11] The Asymptotic Fermat’s Last Theorem for Five-Sixths of Real Quadratic Fields, Compos. Math., Volume 151 (2015), pp. 1395-1415 | DOI | MR | Zbl
[12] Criteria for irreducibility of mod p representations of Frey curves, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 1, pp. 67-76 | DOI | Numdam | MR | Zbl
[13] Level optimisation in the totally real case (2006) (https://arxiv.org/abs/math/0602586v1)
[14] Uniform estimates for primitive divisors in elliptic divisibility sequences, Number theory, analysis and geometry, Springer, 2012, pp. 243-271 | DOI | Zbl
[15] Correspondences on Shimura curves and Mazur’s principle at , Pac. J. Math., Volume 213 (2004) no. 2, pp. 267-280 | DOI | MR | Zbl
[16] Communication networks and Hilbert modular forms, Applications of algebraic geometry to coding theory, physics and computation (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 36, Kluwer Academic Publishers, 2001, pp. 255-270 | DOI | MR | Zbl
[17] On the levels of mod Hilbert modular forms, J. Reine Angew. Math., Volume 537 (2001), pp. 33-65 | MR | Zbl
[18] Perfect powers in elliptic divisibility sequences, J. Number Theory, Volume 132 (2012) no. 5, pp. 998-1015 | DOI | MR | Zbl
[19] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | DOI
[20] Wieferich’s criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988) no. 2, pp. 226-237
[21] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiii+525 pages
[22] Elliptic divisibility sequences with complex multiplication, 2006 (Master’s thesis, Universiteit Utrecht)
[23] On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280
[24] Memoir on elliptic divisibility sequences, Am. J. Math., Volume 70 (1948), pp. 31-74
[25] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573
Cited by Sources: