We define spherical Heron triangles (spherical triangles with “rational” side-lengths and angles) and parametrize them via rational points of certain families of elliptic curves. We show that the congruent number problem has infinitely many solutions for most areas in the spherical setting and we find a spherical Heron triangle with rational medians. We also explore the question of spherical triangles with a single rational median or a single a rational area bisector (median splitting the triangle in half), and discuss various problems involving isosceles spherical triangles.
Nous définissons les triangles de Héron sphériques (triangles sphériques avec des mesures de côtés et des angles « rationnels ») et les paramétrons par des points rationnels en certaines familles de courbes elliptiques. Nous montrons que le problème des nombres congruents a une infinité de solutions pour la plupart des valeurs de l’aire dans le cas sphérique et nous trouvons un triangle de Héron sphérique avec des médianes rationnelles. Nous explorons également la question des triangles sphériques avec une seule médiane rationnelle ou une seule bissectrice d’aire rationnelle (c’est-à-dire, une médiane divisant le triangle en deux), et nous discutons de divers problèmes impliquant des triangles sphériques isocèles.
Revised:
Accepted:
Published online:
Keywords: spherical triangles, elliptic curves, elliptic surfaces

@article{JTNB_2023__35_1_219_0, author = {Tinghao Huang and Matilde Lal{\'\i}n and Olivier Mila}, title = {Spherical {Heron} triangles and elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {219--246}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1243}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1243/} }
TY - JOUR AU - Tinghao Huang AU - Matilde Lalín AU - Olivier Mila TI - Spherical Heron triangles and elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 219 EP - 246 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1243/ DO - 10.5802/jtnb.1243 LA - en ID - JTNB_2023__35_1_219_0 ER -
%0 Journal Article %A Tinghao Huang %A Matilde Lalín %A Olivier Mila %T Spherical Heron triangles and elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2023 %P 219-246 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1243/ %R 10.5802/jtnb.1243 %G en %F JTNB_2023__35_1_219_0
Tinghao Huang; Matilde Lalín; Olivier Mila. Spherical Heron triangles and elliptic curves. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 219-246. doi : 10.5802/jtnb.1243. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1243/
[1] Quadratic Chabauty and rational points, I: -adic heights, Duke Math. J., Volume 167 (2018) no. 11, pp. 1981-2038 (with an appendix by J. Steffen Müller) | DOI | MR | Zbl
[2] The Heron parameters of a triangle, Math. Gaz., Volume 99 (2015) no. 545, pp. 205-212 | DOI | MR | Zbl
[3] Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory, Volume 14 (2020) no. 9, pp. 2369-2416 | DOI | MR | Zbl
[4] On Heron triangles, Ann. Math. Inform., Volume 33 (2006), pp. 15-21 | DOI | MR | Zbl
[5] Rational hyperbolic triangles and a quartic model of elliptic curves, J. Number Theory, Volume 164 (2016), pp. 359-374 | DOI | MR | Zbl
[6] On Triangles With Rational Altitudes, Angle Bisectors Or Medians, Ph. D. Thesis, University of Newcastle, Australia (1989)
[7] An infinite set of Heron triangles with two rational medians, Am. Math. Mon., Volume 104 (1997) no. 2, pp. 107-115 | DOI | MR | Zbl
[8] Heron triangles and elliptic curves, Bull. Aust. Math. Soc., Volume 58 (1998) no. 3, pp. 411-421 | DOI | MR | Zbl
[9] Lectures on elliptic curves, London Mathematical Society Student Texts, 24, Cambridge University Press, 1991, vi+137 pages | DOI | MR
[10] Elliptic curves and triangles with three rational medians, J. Number Theory, Volume 133 (2013) no. 6, pp. 2083-2091 | DOI | MR | Zbl
[11] Elliptic curves coming from Heron triangles, Rocky Mt. J. Math., Volume 44 (2014) no. 4, pp. 1145-1160 | DOI | MR | Zbl
[12] Investigatio trianguli in quo distantiae angulorum ab eius centro gravitatis rationaliter exprimantur, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Volume 12 (1801), pp. 101-113
[13] Finding rational points on bielliptic genus 2 curves, Manuscr. Math., Volume 100 (1999) no. 4, pp. 519-533 | DOI | MR | Zbl
[14] Heron triangles via elliptic curves, Rocky Mt. J. Math., Volume 36 (2006) no. 5, pp. 1511-1526 | DOI | MR | Zbl
[15] My favorite elliptic curve: a tale of two types of triangles, Am. Math. Mon., Volume 102 (1995) no. 9, pp. 771-781 | DOI | MR | Zbl
[16] Heron triangles and their elliptic curves, J. Number Theory, Volume 213 (2020), pp. 232-253 | DOI | MR | Zbl
[17] Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on surfaces, Math. Intell., Volume 30 (2008) no. 4, pp. 4-10 | DOI | MR | Zbl
[18] Heron triangles with two fixed sides, J. Number Theory, Volume 126 (2007) no. 1, pp. 52-67 | DOI | MR | Zbl
[19] Perfect triangles on the curve , J. Aust. Math. Soc., Volume 109 (2020) no. 1, pp. 68-80 | DOI | MR | Zbl
[20] A family of elliptic curves with rank , Period. Math. Hung., Volume 71 (2015) no. 2, pp. 243-249 | DOI | MR | Zbl
[21] Some remarks on Heron triangles, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), Volume 27 (2000), pp. 25-38 | MR | Zbl
[22] On Ceva points of (almost) equilateral triangles, J. Number Theory, Volume 222 (2021), pp. 48-74 | DOI | MR | Zbl
[23] Hyperbolic Heron triangles and elliptic curves, J. Number Theory, Volume 240 (2022), pp. 272-295 | DOI | MR | Zbl
[24] An elliptic surface associated to Heron triangles, J. Number Theory, Volume 123 (2007) no. 1, pp. 92-119 | DOI | MR | Zbl
[25] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 | DOI | Numdam | MR | Zbl
[26] Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., Volume 44 (1978) no. 2, pp. 129-162 | DOI | MR | Zbl
[27] Torsion groups of elliptic surfaces, Compos. Math., Volume 72 (1989) no. 3, pp. 249-267 | Numdam | MR | Zbl
[28] Heron triangles: a new perspective, Aust. Math. Soc. Gaz., Volume 26 (1999) no. 4, pp. 160-168 | MR | Zbl
[29] Mordell-Weil lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 70, Springer, 2019, xvi+431 pages | DOI | MR
[30] On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[31] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR
[32] Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, New Chelsea Publishing Company, 1950
[33] Counting Heron triangles with constraints, Integers, Volume 13 (2013), A3, 17 pages | MR | Zbl
[34] Spherical Trigonometry (Fifth Edition), Macmillan & Co., 1886
Cited by Sources: