We develop a new strategy for studying low weight specializations of -adic families of ordinary modular forms. In the elliptic case, we give a new proof of a result of Ghate–Vatsal which states that a Hida family contains infinitely many classical eigenforms of weight one if and only if it has complex multiplication. Our strategy is designed to explicitly avoid use of the related facts that the Galois representation attached to a classical weight one eigenform has finite image, and that classical weight one eigenforms satisfy the Ramanujan conjecture. We indicate how this strategy might be used to prove similar statements in the case of partial weight one Hilbert modular forms, given a suitable development of Hida theory in that setting.
Nous développons une nouvelle stratégie pour étudier les spécialisations en petits poids des familles -adiques de formes modulaires ordinaires. Dans le cas elliptique, nous donnons une nouvelle preuve d’un résultat de Ghate–Vatsal qui énonce qu’une famille de Hida contient une infinité de formes propres classiques de poids un si et seulement si elle est à multiplication complexe. Notre stratégie est conçue afin d’éviter explicitement l’utilisation de certains faits connexes, à savoir que la représentation galoisienne attachée à une forme propre classique de poids un est d’image finie et que les formes propres classiques de poids un satisfont la conjecture de Ramanujan. Nous indiquons comment utiliser cette stratégie pour démontrer des énoncés similaires dans le cas de formes modulaires Hilbert de poids partiel un, en supposant un développement approprié de la théorie de Hida dans ce contexte.
Revised:
Accepted:
Published online:
Keywords: Modular forms, modular forms of weight one, complex multiplication, ordinary families, Galois representations, $p$-adic power series

@article{JTNB_2023__35_1_167_0, author = {Eric Stubley}, title = {Classical forms of weight one in ordinary families}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {167--217}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1242}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1242/} }
TY - JOUR AU - Eric Stubley TI - Classical forms of weight one in ordinary families JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 167 EP - 217 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1242/ DO - 10.5802/jtnb.1242 LA - en ID - JTNB_2023__35_1_167_0 ER -
%0 Journal Article %A Eric Stubley %T Classical forms of weight one in ordinary families %J Journal de théorie des nombres de Bordeaux %D 2023 %P 167-217 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1242/ %R 10.5802/jtnb.1242 %G en %F JTNB_2023__35_1_167_0
Eric Stubley. Classical forms of weight one in ordinary families. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 167-217. doi : 10.5802/jtnb.1242. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1242/
[1] Everywhere unramified automorphic cohomology for , Int. J. Number Theory, Volume 04 (2008) no. 04, pp. 663-675 | DOI | Zbl
[2] On local Galois representations associated to ordinary Hilbert modular forms, Manuscr. Math., Volume 142 (2013) no. 3-4, pp. 513-524 | DOI | MR | Zbl
[3] Analytic continuation of overconvergent eigenforms, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 29-55 | DOI | MR | Zbl
[4] Companion forms and weight one forms, Ann. Math., Volume 149 (1999) no. 3, pp. 905-919 | DOI | MR | Zbl
[5] Modularity lifting beyond the Taylor-Wiles method, Invent. Math., Volume 211 (2018) no. 1, pp. 297-433 | DOI | MR | Zbl
[6] On a conjecture of R. M. Robinson about sums of roots of unity, J. Reine Angew. Math., Volume 238 (1969), pp. 112-131 | DOI | MR | Zbl
[7] Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996) no. 1-3, pp. 215-241 | DOI | MR | Zbl
[8] La conjecture de Weil. I, Publ. Math., Inst. Hautes Étud. Sci. (1974) no. 43, pp. 273-307 | DOI | Numdam | MR
[9] Formes modulaires de poids , Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | DOI | Numdam | MR | Zbl
[10] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xvi+436 pages | MR
[11] Galois representations modulo and cohomology of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 4, pp. 505-551 | DOI | Numdam | MR | Zbl
[12] On the local behaviour of ordinary -adic representations, Ann. Inst. Fourier, Volume 54 (2004) no. 7, pp. 2143-2162 | DOI | MR | Zbl
[13] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | DOI | MR | Zbl
[14] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | DOI | Numdam | MR | Zbl
[15] On -adic Hecke algebras for over totally real fields, Ann. Math., Volume 128 (1988) no. 2, pp. 295-384 | DOI | MR | Zbl
[16] On nearly ordinary Hecke algebras for over totally real fields, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 139-169 | DOI | MR | Zbl
[17] Hecke fields of analytic families of modular forms, J. Am. Math. Soc., Volume 24 (2011) no. 1, pp. 51-80 | DOI | MR | Zbl
[18] Hecke fields of Hilbert modular analytic families, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro (Contemporary Mathematics), Volume 614, American Mathematical Society, 2014, pp. 97-137 | DOI | MR | Zbl
[19] Transcendence of Hecke operators in the big Hecke algebra, Duke Math. J., Volume 163 (2014) no. 9, pp. 1655-1681 | DOI | MR | Zbl
[20] Growth of Hecke fields along a -adic analytic family of modular forms, Families of automorphic forms and the trace formula (Simons Symposia), Springer, 2016, pp. 129-173 | DOI | MR | Zbl
[21] Parallel weight 2 points on Hilbert modular eigenvarieties and the parity conjecture, Forum Math. Sigma, Volume 7 (2019), e27, 36 pages | DOI | MR | Zbl
[22] A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006) no. 3, pp. 509-529 | DOI | MR | Zbl
[23] -adic numbers, -adic analysis, and zeta-functions, Graduate Texts in Mathematics, 58, Springer, 1984, xii+150 pages | DOI | MR
[24] Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer, 1990, xviii+433 pages (with an appendix by Karl Rubin) | DOI | MR
[25] On the maximum modulus of cyclotomic integers, Acta Arith., Volume 22 (1972), pp. 69-85 | DOI | MR | Zbl
[26] Non-CM Hilbert Modular Forms of Partial Weight One, Ph. D. Thesis, Northwestern University (2016), 141 pages
[27] There exist non-CM Hilbert modular forms of partial weight 1, Int. Math. Res. Not. (2015) no. 24, pp. 13047-13061 | DOI | MR | Zbl
[28] On strong multiplicity one for -adic representations, Int. Math. Res. Not., Volume 1998 (1998) no. 3, pp. 161-172 | DOI | MR
[29] Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) (Lecture Notes in Mathematics), Volume 601 (1977), pp. 17-51 | MR | Zbl
[30] An infinitesimal -adic multiplicative Manin-Mumford conjecture, J. Théor. Nombres Bordeaux, Volume 30 (2018) no. 2, pp. 393-408 | DOI | Numdam | MR | Zbl
[31] A finiteness result for p-adic families of Bianchi modular forms, J. Number Theory, Volume 233 (2022), pp. 405-431 | DOI | MR | Zbl
[32] Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016) no. 1-2, pp. 589-648 | DOI | MR | Zbl
[33] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR
[34] -adic Hecke algebras and L-functions, Ph. D. Thesis, University of California, Los Angeles (1993), 62 pages
[35] On -adic families of Hilbert cusp forms of finite slope, J. Number Theory, Volume 123 (2007) no. 2, pp. 363-387 | DOI | MR | Zbl
Cited by Sources: