We investigate the question of whether the existence of a family of local zero-cycles of degree orthogonal to the Brauer group implies the non-emptiness of the Brauer–Manin set for certain varieties. We provide various examples of Brauer–Manin obstruction to the existence of zero-cycles of appropriate degrees.
Pour certaines variétés, nous étudions la question de savoir si l’existence d’une famille de zéro-cycles locaux de degré orthogonaux au groupe de Brauer implique la non-vacuité de l’ensemble de Brauer–Manin. Nous fournissons divers exemples d’obstructions de Brauer–Manin à l’existence de zéro-cycles de degrés appropriés.
Revised:
Accepted:
Published online:
Keywords: Brauer–Manin obstruction, zero-cycles

@article{JTNB_2023__35_1_151_0, author = {Evis Ieronymou}, title = {Brauer{\textendash}Manin obstruction for zero-cycles on certain varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {151--166}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1241}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1241/} }
TY - JOUR AU - Evis Ieronymou TI - Brauer–Manin obstruction for zero-cycles on certain varieties JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 151 EP - 166 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1241/ DO - 10.5802/jtnb.1241 LA - en ID - JTNB_2023__35_1_151_0 ER -
%0 Journal Article %A Evis Ieronymou %T Brauer–Manin obstruction for zero-cycles on certain varieties %J Journal de théorie des nombres de Bordeaux %D 2023 %P 151-166 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1241/ %R 10.5802/jtnb.1241 %G en %F JTNB_2023__35_1_151_0
Evis Ieronymou. Brauer–Manin obstruction for zero-cycles on certain varieties. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 151-166. doi : 10.5802/jtnb.1241. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1241/
[1] Some quartic curves with no points in any cubic field, Proc. Lond. Math. Soc., Volume 52 (1986) no. 2, pp. 193-214 | DOI | MR | Zbl
[2] The arithmetic of certain quartic curves, Proc. R. Soc. Edinb., Sect. A, Math., Volume 100 (1985) no. 3-4, pp. 201-218 | DOI | MR | Zbl
[3] Hilbert’s Theorem 90 for , with application to the Chow groups of rational surfaces, Invent. Math., Volume 71 (1983) no. 1, pp. 1-20 | DOI | MR | Zbl
[4] L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres Bordeaux, Volume 7 (1995) no. 1, pp. 51-73 Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993) | DOI | Numdam | Zbl
[5] Points rationnels sur les fibrations, Higher dimensional varieties and rational points (Budapest, 2001) (Bolyai Society Mathematical Studies), Volume 12, Springer, 2003, pp. 171-221 | DOI | MR | Zbl
[6] Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray), Enseign. Math., Volume 66 (2020) no. 3-4, pp. 447-487 | Zbl
[7] L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compos. Math., Volume 39 (1979) no. 3, pp. 301-332 | Numdam | Zbl
[8] Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math., Volume 320 (1980), pp. 150-191 | Zbl
[9] Arithmétique des surfaces cubiques diagonales, Diophantine approximation and transcendence theory, Semin., Bonn/FRG 1985 (Lecture Notes in Mathematics), Volume 1290, Springer, 1987, pp. 1-108 | DOI | Zbl
[10] Algebraic families of nonzero elements of Shafarevich-Tate groups, J. Am. Math. Soc., Volume 13 (2000) no. 1, pp. 83-99 | DOI | MR | Zbl
[11] On the Chow groups of certain rational surfaces: A sequel to a paper of S. Bloch, Duke Math. J., Volume 48 (1981) no. 2, pp. 421-447 | MR | Zbl
[12] Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math., Volume 373 (1987), pp. 37-107 | Zbl
[13] Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math., Volume 453 (1994), pp. 49-112 | MR | Zbl
[14] On large Picard groups and the Hasse principle for curves and K3 surfaces, Acta Arith., Volume 76 (1996) no. 2, pp. 165-189 | DOI | MR
[15] Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., Volume 79 (1964), pp. 109-203
[16] Evaluation of Brauer elements over local fields, Math. Ann., Volume 382 (2022) no. 1-2, pp. 239-254
[17] Brauer groups, Tamagawa measures, and rational points on algebraic varieties, Mathematical Surveys and Monographs, 198, American Mathematical Society, 2014, viii+267 pages
[18] Global class field theory of arithmetic schemes, Applications of algebraic -theory to algebraic geometry and number theory (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 55, American Mathematical Society, 1983, pp. 255-331
[19] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996
[20] On the arithmetic of del Pezzo surfaces of degree 2, Proc. Lond. Math. Soc., Volume 89 (2004) no. 3, pp. 545-569
[21] Arithmetic duality theorems, BookSurge, 2006, viii+339 pages
[22] The arithmetic of certain del Pezzo surfaces and surfaces, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 2, pp. 447-460
[23] Persistence of the Brauer-Manin obstruction on cubic surfaces (2021) | arXiv
[24] Weak approximation for surfaces defined by two quadratic forms, Duke Math. J., Volume 63 (1991) no. 2, pp. 517-536
[25] Local fields, Graduate Texts in Mathematics, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg)
[26] Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, 2001, viii+187 pages
[27] Diagonal quartic surfaces, Oberwolfach Rep., Volume 33 (2009), pp. 76-79
[28] The Brauer group of cubic surfaces, Math. Proc. Camb. Philos. Soc., Volume 113 (1993) no. 3, pp. 449-460
[29] Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. J., Volume 161 (2012) no. 11, pp. 2113-2166
Cited by Sources: