Let be the number of divisors of ; let us define It has been shown that, if we set the quotient is bounded for fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when . For instance, when , we prove and
@article{JTNB_1994__6_2_327_0, author = {Marc Del\'eglise and Jean-Louis Nicolas}, title = {Sur les entiers inf\'erieurs \`a $x$ ayant plus de $\log (x)$ diviseurs}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {327--357}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {2}, year = {1994}, doi = {10.5802/jtnb.118}, zbl = {0839.11041}, mrnumber = {1360649}, language = {fr}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.118/} }
TY - JOUR TI - Sur les entiers inférieurs à $x$ ayant plus de $\log (x)$ diviseurs JO - Journal de Théorie des Nombres de Bordeaux PY - 1994 DA - 1994/// SP - 327 EP - 357 VL - 6 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.118/ UR - https://zbmath.org/?q=an%3A0839.11041 UR - https://www.ams.org/mathscinet-getitem?mr=1360649 UR - https://doi.org/10.5802/jtnb.118 DO - 10.5802/jtnb.118 LA - fr ID - JTNB_1994__6_2_327_0 ER -
Marc Deléglise; Jean-Louis Nicolas. Sur les entiers inférieurs à $x$ ayant plus de $\log (x)$ diviseurs. Journal de Théorie des Nombres de Bordeaux, Volume 6 (1994) no. 2, pp. 327-357. doi : 10.5802/jtnb.118. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.118/
[1] Grandes déviations pour certaines fonctions arithmétiques, J. Number Theory 40 (1992), 146-164. | MR: 1149734 | Zbl: 0745.11041
, , , ,[2] Analyse combinatoire, Tomes 1 et 2. Presses universitaires de France, 1970. | MR: 262087 | Zbl: 0221.05002
,[3] Permanent by Möbius inversion, Journal of Combinatorial Theory 4 (1968), 198-200. | MR: 220613 | Zbl: 0162.03201
,[4] Table of the higher mathematical functions, The principia Press, Bloomington, Indiana, 1935, vol. 2. | Zbl: 0013.21603
,[5] Applications des ordinateurs à la théorie des nombres, Thèse Université de Lyon 1, 1991.
,[6] Probabilistic number theory, vol I and II, Grundlehren der Mathematischen Wissenschaften 239-240, Springer-Verlag, 1979. | MR: 551361 | Zbl: 0431.10029
,[7] Numerical evaluation of Euler products, Prepublication.
, ,[8] On the sums of the inverse powers of the prime numbers, Quartely Journal of Math 25 (1891), 347-362. | JFM: 23.0275.02
,[9] An introduction to the theory of numbers, Oxford at the Clarendon Press 1962. | MR: 568909 | Zbl: 0086.25803
and ,[10] On the number of restricted prime factors of an integer, Illinois J. Math 20 (1976), 681-705. | MR: 419382 | Zbl: 0329.10035
,[11] Prime numbers and computer methods for factorization, Birkhaüser, 1985. | MR: 897531 | Zbl: 0582.10001
,Cited by Sources: