We consider Mahler functions which satisfy the functional equation where is in and is an integer. We prove that, for any integer with , either is rational or its irrationality exponent is rational. We also compute the exact value of the irrationality exponent of as soon as the continued fraction expansion of the Mahler function is known. This improves the result of Bugeaud, Han, Wen, and Yao [6] where only an upper bound of the irrationality exponent was provided.
Nous considérons les fonctions de Mahler qui véri-fient l’équation fonctionnelle , où est dans et est un entier. Nous montrons que, pour tout entier vérifiant , ou bien est rationnel, ou bien son exposant d’irrationalité est rationnel. En outre, nous déterminons la valeur exacte de l’exposant d’irrationalité de lorsque l’on connaît le développement en fraction continue de la fonction de Mahler . Cela améliore un résultat de Bugeaud, Han, Wen et Yao [6], qui ne donne qu’une borne supérieure de cet exposant.
Accepted:
Published online:
DOI: 10.5802/jtnb.1090
Keywords: Mahler functions, Mahler Numbers, Irrationality exponent, Hankel determinant
Dzmitry Badziahin 1

@article{JTNB_2019__31_2_431_0, author = {Dzmitry Badziahin}, title = {On the spectrum of irrationality exponents of {Mahler} numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {431--453}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1090}, zbl = {1415.11092}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1090/} }
TY - JOUR AU - Dzmitry Badziahin TI - On the spectrum of irrationality exponents of Mahler numbers JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 431 EP - 453 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1090/ DO - 10.5802/jtnb.1090 LA - en ID - JTNB_2019__31_2_431_0 ER -
%0 Journal Article %A Dzmitry Badziahin %T On the spectrum of irrationality exponents of Mahler numbers %J Journal de théorie des nombres de Bordeaux %D 2019 %P 431-453 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1090/ %R 10.5802/jtnb.1090 %G en %F JTNB_2019__31_2_431_0
Dzmitry Badziahin. On the spectrum of irrationality exponents of Mahler numbers. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 431-453. doi : 10.5802/jtnb.1090. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1090/
[1] Irrationality measures for some automatic real numbers, Math. Proc. Camb. Philos. Soc., Volume 147 (2009) no. 3, pp. 659-678 | DOI | MR | Zbl
[2] Continued fractions of certain Mahler functions, Acta Arith., Volume 188 (2019) no. 1, pp. 53-81 | DOI | MR | Zbl
[3] -regular power series and Mahler-type functional equations, J. Number Theory, Volume 49 (1994) no. 3, pp. 269-286 | DOI | MR | Zbl
[4] Diophantine approximation and Cantor sets, Math. Ann., Volume 341 (2008) no. 3, pp. 677-684 | DOI | MR | Zbl
[5] On the rational approximation to the Thue-Morse-Mahler numbers, Ann. Inst. Fourier, Volume 61 (2011) no. 5, pp. 2065-2076 | DOI | MR | Zbl
[6] Hankel determinants, Padé approximations and irrationality exponents, Int. Math. Res. Not., Volume 2016 (2016) no. 5, pp. 1467-1496 | DOI | Zbl
[7] Morphic and automatic words: maximal blocks and Diophantine approximation, Acta Arith., Volume 149 (2011) no. 2, pp. 181-199 | DOI | MR | Zbl
[8] On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J., Volume 30 (2013) no. 1, pp. 39-65 | DOI | MR | Zbl
[9] On the irrationality exponent of the regular paperfolding numbers, Linear Algebra Appl., Volume 446 (2014), pp. 237-264 | MR | Zbl
[10] On the rational approximations to the real numbers corresponding to the differences of the Fibonacci sequence, Math. Appl., Volume 28 (2015) no. 4, pp. 857-864 | MR | Zbl
Cited by Sources: