Erdős first conjectured that infinitely often we have , where is the Euler totient function and is the sum of divisors function. This was proven true by Ford, Luca and Pomerance in 2010. We ask the analogous question of whether infinitely often we have where and are polynomials over some finite field . We find that when or , then this can only trivially happen when . Moreover, we give a complete characterisation of the solutions in the case or . In particular, we show that infinitely often when or .
Erdős a conjecturé qu’il existe une infinité de nombres et tels que , où est l’indicatrice d’Euler et est la fonction somme de diviseurs. Cette conjecture a été prouvée en 2010 par Ford, Luca et Pomerance. De façon analogue, on se demande s’il existe une infinité de polynômes et sur un corps fini tels que On trouve que si ou c’est vrai seulement dans le cas trivial . De plus, on donne une caractérisation des solutions dans les cas et . En particulier, on montre que si ou on a pour une infinité de polynômes.
Accepted:
Published online:
DOI: 10.5802/jtnb.1088
Keywords: Function Fields, Euler Totient Function, Primitive Divisors
Patrick Meisner 1

@article{JTNB_2019__31_2_403_0, author = {Patrick Meisner}, title = {On {Incidences} of $\varphi $ and $\sigma $ in the {Function} {Field} {Setting}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {403--415}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1088}, zbl = {07054514}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/} }
TY - JOUR AU - Patrick Meisner TI - On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 403 EP - 415 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/ DO - 10.5802/jtnb.1088 LA - en ID - JTNB_2019__31_2_403_0 ER -
%0 Journal Article %A Patrick Meisner %T On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting %J Journal de théorie des nombres de Bordeaux %D 2019 %P 403-415 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/ %R 10.5802/jtnb.1088 %G en %F JTNB_2019__31_2_403_0
Patrick Meisner. On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 403-415. doi : 10.5802/jtnb.1088. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/
[1] The orders of the linear groups, Commun. Pure Appl. Math., Volume 8 (1955), pp. 355-365 | DOI | MR | Zbl
[2] Taltheoretiske undersøgelser, Tidsskrift for mathematik, Volume 4 (1886), pp. 70-80
[3] Hardy–Littlewood tuple conjecture over large finite fields, Int. Math. Res. Not., Volume 2014 (2014) no. 2, pp. 568-575 | DOI | MR | Zbl
[4] On quantitative analogues of the Goldbach and twin prime conjectures over (2009) (https://arxiv.org/abs/0912.1702)
[5] The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2, Philos. Trans. A, R. Soc. Lond., Volume 373 (2015) no. 2040, 20140311, 14 pages | MR | Zbl
[6] Remarks on number theory II. Some problems on the function, Acta Arith., Volume 5 (1959), pp. 171-177 | DOI | MR | Zbl
[7] Common values of the arithmetic functions and , Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 478-488 | DOI | MR | Zbl
[8] On common values of and . I, Acta Math. Hung., Volume 133 (2011) no. 3, pp. 251-271 | DOI | Zbl
[9] On common values of and , II, Algebra Number Theory, Volume 6 (2012) no. 8, pp. 1669-1696 | DOI | MR | Zbl
[10] Zur theorie der Potenzreste, Monatsh. f. Math., Volume 3 (1892), pp. 265-284 | DOI | MR | Zbl
Cited by Sources: