On Incidences of φ and σ in the Function Field Setting
Journal de Théorie des Nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 403-415.

Erdős first conjectured that infinitely often we have φ(n)=σ(m), where φ is the Euler totient function and σ is the sum of divisors function. This was proven true by Ford, Luca and Pomerance in 2010. We ask the analogous question of whether infinitely often we have φ(F)=σ(G) where F and G are polynomials over some finite field 𝔽 q . We find that when q2 or 3, then this can only trivially happen when F=G=1. Moreover, we give a complete characterisation of the solutions in the case q=2 or 3. In particular, we show that φ(F)=σ(G) infinitely often when q=2 or 3.

Erdős a conjecturé qu’il existe une infinité de nombres n et m tels que φ(n)=σ(m), où φ est l’indicatrice d’Euler et σ est la fonction somme de diviseurs. Cette conjecture a été prouvée en 2010 par Ford, Luca et Pomerance. De façon analogue, on se demande s’il existe une infinité de polynômes F et G sur un corps fini 𝔽 q tels que φ(F)=σ(G). On trouve que si q2 ou 3, c’est vrai seulement dans le cas trivial F=G=1. De plus, on donne une caractérisation des solutions dans les cas q=2 et 3. En particulier, on montre que si q=2 ou 3, on a φ(F)=σ(G) pour une infinité de polynômes.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.1088
Classification: 11N64
Keywords: Function Fields, Euler Totient Function, Primitive Divisors
Patrick Meisner 1

1 Tel Aviv University, Israel
@article{JTNB_2019__31_2_403_0,
     author = {Patrick Meisner},
     title = {On {Incidences} of $\varphi $ and $\sigma $ in the {Function} {Field} {Setting}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {403--415},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {2},
     year = {2019},
     doi = {10.5802/jtnb.1088},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/}
}
TY  - JOUR
TI  - On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2019
DA  - 2019///
SP  - 403
EP  - 415
VL  - 31
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/
UR  - https://doi.org/10.5802/jtnb.1088
DO  - 10.5802/jtnb.1088
LA  - en
ID  - JTNB_2019__31_2_403_0
ER  - 
%0 Journal Article
%T On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting
%J Journal de Théorie des Nombres de Bordeaux
%D 2019
%P 403-415
%V 31
%N 2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1088
%R 10.5802/jtnb.1088
%G en
%F JTNB_2019__31_2_403_0
Patrick Meisner. On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting. Journal de Théorie des Nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 403-415. doi : 10.5802/jtnb.1088. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/

[1] Emil Artin The orders of the linear groups, Commun. Pure Appl. Math., Volume 8 (1955), pp. 355-365 | Article | MR: 70642 | Zbl: 0065.01204

[2] A. S. Bang Taltheoretiske undersøgelser, Tidsskrift for mathematik, Volume 4 (1886), pp. 70-80

[3] Lior Bary-Soroker Hardy–Littlewood tuple conjecture over large finite fields, Int. Math. Res. Not., Volume 2014 (2014) no. 2, pp. 568-575 | Article | MR: 3159081 | Zbl: 1296.11165

[4] Andreas O. Bender; Paul Pollack On quantitative analogues of the Goldbach and twin prime conjectures over 𝔽 q [t] (2009) (https://arxiv.org/abs/0912.1702)

[5] Dan Carmon The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2, Philos. Trans. A, R. Soc. Lond., Volume 373 (2015) no. 2040, 20140311, 14 pages | MR: 3338117 | Zbl: 1397.11158

[6] Pál Erdős Remarks on number theory II. Some problems on the σ function, Acta Arith., Volume 5 (1959), pp. 171-177 | Article | MR: 107623 | Zbl: 0092.04601

[7] Kevin Ford; Florian Luca; Carl Pomerance Common values of the arithmetic functions ϕ and σ, Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 478-488 | Article | MR: 2651943 | Zbl: 1205.11010

[8] Kevin Ford; Paul Pollack On common values of φ(n) and σ(m). I, Acta Math. Hung., Volume 133 (2011) no. 3, pp. 251-271 | Article | Zbl: 1265.11092

[9] Kevin Ford; Paul Pollack On common values of ϕ(n) and σ(m), II, Algebra Number Theory, Volume 6 (2012) no. 8, pp. 1669-1696 | Article | MR: 3033524 | Zbl: 1279.11093

[10] Karl Zsigmondy Zur theorie der Potenzreste, Monatsh. f. Math., Volume 3 (1892), pp. 265-284 | Article | MR: 1546236 | Zbl: 24.0176.02

Cited by Sources: