In this paper we establish an asymptotic formula for the sum of the first prime numbers, more precise than the one given by Massias and Robin in 1996. Further we prove a series of results concerning Mandl’s inequality on the sum of the first prime numbers. We use these results to find new explicit estimates for the sum of the first prime numbers, which improve the currently best known estimates.
Dans cet article, nous établissons une formule asymptotique pour la somme des premiers nombres premiers, plus précise que celle donnée par Massias et Robin en 1996. En outre, nous prouvons un certain nombre de résultats concernant l’inégalité de Mandl pour la somme des premiers nombres premiers. Nous utilisons ces résultats pour établir de nouvelles estimations explicites de la somme des premiers nombres premiers, qui améliorent les meilleures estimations actuellement connues.
Accepted:
Published online:
DOI: 10.5802/jtnb.1081
Keywords: Asymptotic expansion, Mandl’s inequality, Sum of prime numbers
Christian Axler 1

@article{JTNB_2019__31_2_293_0, author = {Christian Axler}, title = {On the sum of the first $n$ prime numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {293--311}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1081}, zbl = {1418.11130}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/} }
TY - JOUR AU - Christian Axler TI - On the sum of the first $n$ prime numbers JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 293 EP - 311 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/ DO - 10.5802/jtnb.1081 LA - en ID - JTNB_2019__31_2_293_0 ER -
%0 Journal Article %A Christian Axler %T On the sum of the first $n$ prime numbers %J Journal de théorie des nombres de Bordeaux %D 2019 %P 293-311 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/ %R 10.5802/jtnb.1081 %G en %F JTNB_2019__31_2_293_0
Christian Axler. On the sum of the first $n$ prime numbers. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 293-311. doi : 10.5802/jtnb.1081. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/
[1] Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | Zbl
[2] Über die Primzahl-Zählfunktion, die -te Primzahl und verallgemeinerte Ramanujan-Primzahlen, Ph. D. Thesis, Heinrich-Heine-Universität Düsseldorf (Germany) (2013) (https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=26247)
[3] On a sequence involving prime numbers, J. Integer Seq., Volume 18 (2015) no. 7, 15.7.6, 13 pages | MR | Zbl
[4] New estimates for some functions defined over primes, Integers, Volume 18 (2018), A52, 21 pages | MR | Zbl
[5] Improving the Estimates for a Sequence Involving Prime Numbers, Notes Number Theory Discrete Math., Volume 25 (2019) no. 1, pp. 8-13 | DOI | Zbl
[6] New estimates for the th prime number, J. Integer Seq., Volume 22 (2019) no. 4, 19.4.2, 30 pages | Zbl
[7] La determinazione assintotica dell’ numero primo, Napoli Rend., Volume 8 (1902), pp. 132-166 | Zbl
[8] Maximal product of primes whose sum is bounded, Proc. Steklov Inst. Math., Volume 282 (2013) no. 1, pp. 73-102 | DOI | MR | Zbl
[9] An arithmetic equivalence of the Riemann hypothesis, J. Aust. Math. Soc., Volume 106 (2019) no. 2, pp. 235-273 | DOI | MR | Zbl
[10] Autour de la fonction qui compte le nombre de nombres premiers, Ph. D. Thesis, Université de Limoges (France) (1998) (http://www.theses.fr/1998LIMO0007)
[11] The th prime is greater than for , Math. Comput., Volume 68 (1999) no. 225, pp. 411-415 | DOI | MR | Zbl
[12] Explicit estimates of some functions over primes, Ramanujan J., Volume 45 (2018) no. 1, pp. 227-251 | DOI | MR | Zbl
[13] Sur la distribution des zéros de la fonction et ses conséquences arithmétiques, Bull. Soc. Math. Fr., Volume 24 (1896), pp. 199-220 | DOI | Zbl
[14] On the ratio of the arithmetic and geometric means of the prime numbers and the number , Int. J. Number Theory, Volume 9 (2013) no. 6, pp. 1593-1603 | DOI | Zbl
[15] Effective bounds for the maximal order of an element in the symmetric group, Math. Comput., Volume 53 (1989) no. 188, pp. 665-678 | DOI | MR | Zbl
[16] Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux, Volume 8 (1996) no. 1, pp. 213-238 | MR | Zbl
[17] Permanence de relations de récurrence dans certains développements asymptotiques, Publ. Inst. Math., Nouv. Sér., Volume 43 (1988), pp. 17-25 | MR | Zbl
[18] The -th prime is greater than , Proc. Lond. Math. Soc., Volume 45 (1939), pp. 21-44 | DOI | MR | Zbl
[19] Approximate formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94 | DOI | MR | Zbl
[20] Sharper bounds for the Chebyshev functions and , Math. Comput., Volume 29 (1975), pp. 243-269 | MR | Zbl
[21] Fast computation of some asymptotic functional inverses, J. Symb. Comput., Volume 17 (1994) no. 3, pp. 227-236 | DOI | MR | Zbl
[22] On the asymptotic expansion of the sum of the first primes (2015) (https://arxiv.org/abs/1011.1667)
[23] Some new inequalities for primes (2012) (https://arxiv.org/abs/1209.3729)
[24] On the maximal order in and , Acta Arith., Volume 37 (1980), pp. 321-331 | DOI | Zbl
[25] Recherches analytiques la théorie des nombres premiers, Ann. Soc. scient. Bruxelles, Volume 20 (1896), pp. 183-256 | Zbl
[26] Sur la fonction de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mem. Couronnés de l’Acad. Roy. Sci. Bruxelles, Volume 59 (1899), pp. 1-74 | Zbl
Cited by Sources: