Special functions and twisted L-series
Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 931-961.

We present a generalization of the Anderson–Thakur special function, and we prove a rationality result for several variable twisted L-series associated to shtuka functions.

Nous donnons une généralisation de la fonction spéciale d’Anderson–Thakur et nous prouvons un théorème de rationalité pour les séries L à plusieurs variables associées aux fonctions chtoucas.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1007
Classification: 11M38,  11F52,  11G09
Keywords: Goss L-functions, several variable L-series, Drinfeld modules
License: CC-BY-ND 4.0
@article{JTNB_2017__29_3_931_0,
     author = {Bruno Angl\`es and Tuan Ngo Dac and Floric Tavares Ribeiro},
     title = {Special functions and twisted $L$-series},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {931--961},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {3},
     year = {2017},
     doi = {10.5802/jtnb.1007},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1007/}
}
TY  - JOUR
TI  - Special functions and twisted $L$-series
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2017
DA  - 2017///
SP  - 931
EP  - 961
VL  - 29
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1007/
UR  - https://doi.org/10.5802/jtnb.1007
DO  - 10.5802/jtnb.1007
LA  - en
ID  - JTNB_2017__29_3_931_0
ER  - 
%0 Journal Article
%T Special functions and twisted $L$-series
%J Journal de Théorie des Nombres de Bordeaux
%D 2017
%P 931-961
%V 29
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1007
%R 10.5802/jtnb.1007
%G en
%F JTNB_2017__29_3_931_0
Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro. Special functions and twisted $L$-series. Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 931-961. doi : 10.5802/jtnb.1007. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1007/

[1] Greg W. Anderson Rank one elliptic A-modules and A-harmonic series, Duke Math. J., Volume 73 (1994) no. 3, pp. 491-542 | DOI | Zbl

[2] Greg W. Anderson Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in Characteristic p, J. Number Theory, Volume 60 (1996) no. 1, pp. 165-209 | DOI | Zbl

[3] Greg W. Anderson; Dinesh S. Thakur Tensor Powers of the Carlitz Module and Zeta Values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | Zbl

[4] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro Exceptional Zeros of L-series and Bernoulli–Carlitz Numbers (2015) (https://arxiv.org/abs/1511.06209)

[5] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro Twisted Characteristic p Zeta Functions, J. Number Theory, Volume 168 (2016), pp. 180-214 | DOI | Zbl

[6] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro Stark units in positive characteristic, Proc. Lond. Math. Soc., Volume 115 (2017), pp. 763-812 | DOI | Zbl

[7] Bruno Anglès; Federico Pellarin Universal Gauss-Thakur sums and L-series, Invent. Math., Volume 200 (2015) no. 2, pp. 653-669 | DOI | Zbl

[8] Bruno Anglès; Federico Pellarin; Floric Tavares Ribeiro Anderson-Stark units for 𝔽 q [θ] (2016) (https://arxiv.org/abs/1501.06804, to appear in Trans. Am. Math. Soc.) | DOI

[9] Bruno Anglès; Federico Pellarin; Floric Tavares Ribeiro Arithmetic of positive characteristic L-series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 (with an appendix by F. Demeslay) | DOI | Zbl

[10] Bruno Anglès; Lenny Taelman Arithmetic of characteristic p special L-values, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 1000-1032 (with an appendix by V. Bosser) | DOI | Zbl

[11] Bruno Anglès; Floric Tavares Ribeiro Arithmetic of function fields units, Math. Ann., Volume 367 (2017), pp. 501-579 | DOI

[12] Florent Demeslay A class formula for L-series in positive characteristic (2014) (https://arxiv.org/abs/1412.3704)

[13] Jiangxue Fang Equivariant Special L-values of abelian t-modules (2015) (https://arxiv.org/abs/1503.07243)

[14] Jiangxue Fang Special L-values of abelian t-modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | DOI | Zbl

[15] Jiangxue Fang Equivariant trace formula mod p, C. R., Math., Acad. Sci. Paris, Volume 354 (2016) no. 4, pp. 335-338 | DOI

[16] David Goss Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Volume 35, Springer, 1996, xiii+422 pages | Zbl

[17] Nathan Green; Matthew A. Papanikolas Special L-values and shtuka functions for Drinfeld modules on elliptic curves (2016) (https://arxiv.org/abs/1607.04211, to appear in Research in the Mathematical Sciences)

[18] Matthew A. Papanikolas Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss L-Functions (work in progress)

[19] Federico Pellarin Values of certain L-series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | DOI | Zbl

[20] Lenny Taelman A Dirichlet unit theorem for Drinfeld modules, Math. Ann., Volume 348 (2010) no. 4, pp. 899-907 | DOI | Zbl

[21] Lenny Taelman Special L-values of Drinfeld modules, Ann. Math., Volume 175 (2012) no. 1, pp. 369-391 | DOI | Zbl

[22] Dinesh S. Thakur Gauss sums for 𝔽 q [T], Invent. Math., Volume 94 (1988) no. 1, pp. 105-112 | DOI | Zbl

[23] Dinesh S. Thakur Shtukas and Jacobi sums, Invent. Math., Volume 111 (1993) no. 3, pp. 557-570 | DOI | Zbl

Cited by Sources: