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Linear relations with conjugates of a Salem
number

par Artūras DUBICKAS et Jonas JANKAUSKAS

Résumé. Dans cet article, nous considérons les relations linéaires entre les
conjugués d’un nombre de Salem α. Nous montrons qu’une telle relation pro-
vient d’une relation linéaire entre les conjugués de l’entier algébrique tota-
lement réel correspondant α + 1/α. On montre également que le plus petit
degré d’un nombre de Salem satisfaisant à une relation non triviale entre ces
conjugués est 8 tandis que la longueur la plus courte d’une relation linéaire
non-triviale entre les conjugués d’un nombre de Salem est 6.

Abstract. In this paper we consider linear relations with conjugates of a
Salem number α. We show that every such a relation arises from a linear
relation between conjugates of the corresponding totally real algebraic integer
α+ 1/α. It is also shown that the smallest degree of a Salem number with a
nontrivial relation between its conjugates is 8, whereas the smallest length of
a nontrivial linear relation between the conjugates of a Salem number is 6.

1. Introduction
Let α be an algebraic number of degree d ≥ 2 over Q with conjugates

α1 = α, α2, . . . , αd. An additive linear relation
(1.1) k1α1 + k2α2 + · · ·+ kdαd = 0
with some k1, k2, . . . , kd ∈ Q is called nontrivial if ki 6= kj for some 1 ≤ i <
j ≤ d. Thus, the relation

Trace(α) := α1 + α2 + · · ·+ αd = 0
and its rational multiples

∑d
j=1 rαj = 0, where r ∈ Q, are trivial lin-

ear relations. (These hold for conjugates of any algebraic number whose
trace is zero.) Note that if (1.1) is a nontrivial linear relation with some
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k1, k2, . . . , kd ∈ Q then, by multiplying all the ki by their common denomi-
nator, we can assume that k1, k2, . . . , kd ∈ Z. Accordingly, we call the sum

|k1|+ |k2|+ · · ·+ |kd| ∈ N

the length of the relation (1.1).
The investigation of nontrivial linear relations (1.1) in conjugates of alge-

braic numbers has begun with the papers of Kurbatov [16, 17, 18]. In [26],
Smyth obtained some useful results and also formulated several natural
conjectures on the possibility of (1.1) which are still wide open; see also his
previous paper [25]. Further results on this subject have been obtained by
several authors in [1, 5, 6, 7, 8, 9, 15, 19, 20, 28].

Recently, in [10] it was shown that there is a unique Pisot number α =
(1 +

√
3 + 2

√
5)/2 with minimal polynomial x4− 2x3 +x− 1 satisfying the

nontrivial linear relation

α1 + α2 − α3 − α4 = 0

of length 4. Recall that an algebraic integer α > 1 is called a Pisot number
if its other conjugates over Q (if any) all lie in the open unit disc |z| < 1.
This answers two questions raised earlier in [12]. For instance, this implies
that no two conjugates of a Pisot number can have the same imaginary
part. See also a subsequent paper [11] for some further analysis of some
simple linear relations of small length.

In the present paper, we investigate additive linear relations in conjugates
of a Salem number. Recall that an algebraic integer α > 1 is called a Salem
number if its other conjugates over Q all lie in the closed unit disc |z| ≤ 1
with at least one conjugate lying on the circle |z| = 1. Of course, this implies
that 1/α is a conjugate to α, whereas all other conjugates lie on the circle
|z| = 1.

Throughout, if α > 1 is a Salem number of degree d = 2s ≥ 4 we label
its conjugates as in the theorem below.

Theorem 1.1. Let α1 = α > 1 be a Salem number of degree d = 2s ≥ 4
with conjugates α1, . . . , αd satisfying α2 = 1/α1 and α2j = 1/α2j−1 = α2j−1
for j = 2, . . . , s. If for some rational numbers ki, i = 1, . . . , d, and for some
totally real algebraic number γ we have

(1.2) k1α1 + k2α2 + · · ·+ kdαd = γ,

then k2j−1 = k2j for each j = 1, . . . , s.

In particular, the theorem obviously holds for γ = 0. So, every linear
relation (1.1) in the conjugates αi, i = 1, . . . , d, of a Salem number α is
induced by the linear relation

(1.3) k1β1 + k3β2 + · · ·+ k2s−1βs = 0
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in conjugates of the respective totally real algebraic integer β1 = β :=
α+ 1/α > 2 whose other conjugates are

βj = α2j−1 + α2j = α2j−1 + 1/α2j−1 = α2j−1 + α2j−1 = 2<α2j−1 ∈ (−2, 2)

for j = 2, . . . , s. If f is the minimal polynomial of a Salem number α of
degree d = 2s and g is the minimal polynomial of β = α+ 1/α of degree s
then they are related by the identity f(x) = xsg(x+ 1/x). Then, as in [4],
we call g the trace polynomial of f . Note that f is irreducible if and only if
g is irreducible. Also, Trace(α) =

∑d
j=1 αj =

∑s
i=1 βi = Trace(β).

By [18] (or [6]), the only relation with conjugates β1 = β, . . . , βp of an
irreducible polynomial of prime degree p can be of the form

rβ1 + rβ2 + · · ·+ rβp = 0,

where r ∈ Q. Hence, the only possible linear relation with conjugates of
a Salem number α with degree 2p is rTrace(α) = 0, where r ∈ Q. This
relation is trivial.

So, in particular Theorem 1.1 implies that

Corollary 1.2. If p is a prime number then there are no nontrivial linear
relations in conjugates of a Salem number of degree d = 2p.

By [21], it is known that there are Salem numbers of every integral trace.
The degree of a Salem number with negative trace −t is quite large if t ∈ N
is large. Earlier, in [27] Smyth has shown that there are Salem numbers
with trace −1 of every even degree d ≥ 8.

Here, by a similar argument, we show that

Theorem 1.3. For every even d ≥ 6 there is a Salem number of degree d
with trace 0.

In Corollary 2.2 below, we list of all 4 possible Salem numbers of degree 6
and trace 0. Note that there are no Salem numbers of degree 4 and trace 0.
Indeed, otherwise the minimal polynomial of such a Salem number would
be x4 +ax2 +1, with a ∈ Z, which is impossible, since −α is not a conjugate
of a Salem number α.

Our next theorem describes the minimal length of nontrivial linear rela-
tions between conjugates of a Salem number and the minimal degree of a
Salem number for which a nontrivial linear relation may occur.

Theorem 1.4. Suppose α > 1 is a Salem number with conjugates α1 =
α, α2, . . . , αd over Q labelled as in Theorem 1.1.

(i) If for some integers k1, k2, . . . , kd, not all zero, the nontrivial linear
relation (1.1) holds then its length must be at least 6. Furthermore,
there exist Salem numbers α of degree 12 whose conjugates can be
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labelled so that they satisfy the following nontrivial linear relation
of length 6:

α1 + α2 + α3 + α4 + α5 + α6 =
6∑

j=1
1 · αj +

12∑
j=7

0 · αj = 0.

(ii) The smallest degree of a Salem number with a nontrivial linear re-
lation between its conjugates is 8. Furthermore, there exist Salem
numbers α of degree 8 whose conjugates can be labelled so that they
satisfy the following nontrivial linear relation:

α1 + α2 + α3 + α4 − α5 − α6 − α7 − α8 = 0.

In the next section we will give some auxiliary results. Then, in Section 3
we will prove the theorems.

2. Auxiliary results
We begin with two simple lemmas.

Lemma 2.1. The cubic polynomial x3 − ax + b ∈ R[x] has three distinct
roots in the interval (−2, 2) if and only if 0 < a < 4 and

(2.1) max
(

2a− 8,−2a
√
a

3
√

3

)
< b < min

(
8− 2a, 2a

√
a

3
√

3

)
.

It has two distinct roots in (−2, 2) and one root in (2,+∞) if and only if
3 < a < 12 and

(2.2) − 2a
√
a

3
√

3
< b < −|2a− 8|.

Note that (2.1) implies 2a− 8 < b, whereas (2.2) yields b < 2a− 8.

Proof. Set
h(x) := x3 − ax+ b.

Since h′(x) = 3x2 − a, the polynomial h has only one real root if a ≤ 0.
Suppose a > 0. Set x0 :=

√
a/3. Then, the polynomial h has three

distinct roots in (−2,+∞) iff −2 < −x0 (i.e., 0 < a < 12),
(2.3) h(−2) = −8 + 2a+ b < 0,

(2.4) h(−x0) = 2a
√
a

3
√

3
+ b > 0

and

(2.5) h(x0) = −2a
√
a

3
√

3
+ b < 0.

Clearly, all three roots belong to (−2, 2) if, in addition, we have h(2) =
8 − 2a + b > 0. Combined with (2.3), (2.4) and (2.5) this proves (2.1).
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Evidently, (2.1) is only possible for some b when its left hand side does not
exceed its right hand side, that is, when 0 < a < 4.

Similarly, two roots of h are in (−2, 2) and one root in (2,+∞) when
one has (2.3), (2.4), and h(2) = 8 − 2a + b < 0. (As h is increasing in
the interval (x0, 2), the inequality (2.5) automatically holds.) Evidently, all
these inequalities combine into (2.2). Here, as 0 < a < 12, it is easy to see
that the inequality

|2a− 8| < 2a
√
a

3
√

3
holds only for a in the range 3 < a < 12, so only for such a one can find
some b satisfying (2.2). �

Observe that there are only 7 pairs of integers (a, b) satisfying the condi-
tions 3 < a < 12 and (2.2), namely, (4,−1), (4,−2), (4,−3), (5,−3), (5,−4),
(6,−5) and (7,−7). However, the polynomials x3− 4x− 3, x3− 5x− 4 and
x3−6x−5 are reducible. The other four polynomials x3−4x−1, x3−4x−2,
x3 − 5x− 3 and x3 − 7x− 7 are irreducible. So, Lemma 2.1 implies that

Corollary 2.2. There are exactly four Salem numbers of degree 6 with
trace 0. Their minimal polynomials are:

x6 − x4 − x3 − x2 + 1, x6 − x4 − 2x3 − x2 + 1,
x6 − 2x4 − 3x3 − 2x2 + 1, x6 − 4x4 − 7x3 − 4x2 + 1.

Lemma 2.3. Let h(x) ∈ Z[x] be a monic polynomial of degree k ≥ 2 with
k − 1 roots in the interval (−2, 1/4) and one root in (−6,−2). Then,

f(x) := (−1)kx2kh
(
(x+ 1/x)(1− x− 1/x)

)
∈ Z[x]

is a monic reciprocal polynomial of degree 4k which defines a Salem number
of degree d = 4k in case it is irreducible over Q. Moreover, the conjugates
of this Salem number α can be labelled so that
(2.6) α1 + α2 + α3 + α4 = · · · = α4k−3 + α4k−2 + α4k−1 + α4k = 1.

Proof. Let γ1 ∈ (−6,−2) and γ2 < · · · < γk ∈ (−2, 1/4) be the roots of h.
Consider the monic polynomial g(x) := (−1)kh(x(1− x)). Then, its roots

(2.7) β2j−1 :=
1 +

√
1− 4γj

2 and β2j :=
1−

√
1− 4γj

2 ,

where j = 1, . . . , k, satisfy
β1 = (1 +

√
1− 4γ1)/2 > 2,

β2 = (1−
√

1− 4γ1)/2 ∈ (−2,−1)
and β3, . . . , β2k ∈ (−1, 2). So, g has 2k − 1 roots in (−2, 2) and one root
greater than 2. Clearly, by (2.7), we have
(2.8) β1 + β2 = · · · = β2k−1 + β2k = 1.
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Now, as the roots α1 = α > 1, α2 = 1/α, . . . , α4k−1, α4k = 1/α4k−1 of

f(x) = x2kg(x+ 1/x) = (−1)kx2kh
(
(x+ 1/x)(1− x− 1/x)

)
satisfy βj = α2j−1 + α2j = α2j−1 + 1/α2j−1 for each j = 1, . . . , 2k, we see
that (2.8) implies (2.6). Furthermore, α is a Salem number of degree 4k
provided that f is irreducible over Q. �

We made some calculations related to Lemma 2.3. It turns out that
there exactly 15 quadratic polynomials h satisfying the conditions of the
lemma and thus producing 15 Salem numbers of degree 8 satisfying (2.6)
with k = 2. For instance, x2 + 4x + 1 is such a quadratic polynomial h.
Also, there are exactly 30 cubic, 20 quartic and 4 quintic polynomials h
producing 30 Salem numbers of degree 12 (satisfying (2.6) with k = 3),
20 Salem numbers of degree 16 (satisfying (2.6) with k = 4) and 4 Salem
numbers of degree 20 (satisfying (2.6) with k = 5), respectively. In the case
k = 5, the example of h is

x5 + 9x4 + 22x3 + 16x2 − x− 1.
This gives a Salem number α of degree 20 with minimal polynomial
x20 − 5x19 + 11x18 − 19x17 + 26x16 − 29x15 + 27x14 − 19x13 + 8x12 + x11

− 5x10 + x9 + 8x8 − 19x7 + 27x6 − 29x5 + 26x4 − 19x3 + 11x2 − 5x+ 1

whose conjugates satisfy (2.6) with k = 5.
The first part of the next lemma was inspired by Lemma 1 of Beukers

and Smyth in [2]. Essentially, it is a version of their algorithm [2] to lo-
cate cyclotomic points on curves, specialized to the case of sequences of
polynomials that produce Salem numbers from Pisot numbers. Also, the
second part of Lemma 2.4 is loosely related to the work on irreducibility of
polynomials of the type xnf(x)+g(x) ∈ Z[x] and on the sequences and cov-
ering systems of integers by Schinzel [24], Filaseta et al. [13, 14], although
these irreducibility results are not of direct relevance here. Throughout,
f∗(x) = xdeg ff(1/x) stands for the reciprocal polynomial of f(x).

Lemma 2.4. For n ∈ N, consider the sequence of polynomials
gn(x) := xnf(x) + εf∗(x),

where ε ∈ {−1, 1} and f(x) ∈ Z[x] satisfies f∗(x) 6= ±f(x). Suppose that a
root of unity ζ ∈ C is also a root of some polynomial gn(x). Then, ζ must
appear among the zeros of at least one of the following polynomials:

f(x2)f∗(x)2 + εf(x)2f∗(x2), f(x)2f∗(−x2)± f(−x2)f∗(x)2,

f(x)f∗(−x)± f(−x)f∗(x).
In particular, if none of these polynomials is identically zero, then the set
of all such possible roots of unity ζ is finite.
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In addition, if f(ζ) 6= 0 then the root of unity ζ is a zero of gn(z) if
and only if n belongs to the arithmetic progression `k + r, k = 0, 1, 2, . . . ,
where r is a fixed integer in the range 0 ≤ r < ` and ` = ord(ζ) denotes the
multiplicative order of ζ.

Proof. As ζ is the root of unity, by Lemma 1 of [2] (or Lemma 2.1 of [27]), at
least one of the three numbers ζ2, −ζ2, −ζ must be an algebraic conjugate
of ζ over Q. Multiplying gn(x) = xnf(x) + εf∗(x) by xnf(x) − εf∗(x) we
see that the polynomial h(x) = x2nf(x)2 − f∗(x)2 has a zero at x = ζ.

If ζ2 is conjugate of ζ, then one also has gn(ζ2) = 0. Combining this with
h(ζ) = 0 yields {

ζ2nf(ζ)2 − f∗(ζ)2 = 0,
ζ2nf(ζ2) + εf∗(ζ2) = 0.

Hence, ∣∣∣∣f(ζ)2 −f∗(ζ)2

f(ζ2) εf∗(ζ2)

∣∣∣∣ = εf(ζ)2f∗(ζ2) + f(ζ2)f∗(ζ)2 = 0.

Thus, ζ is the root of
f(x2)f∗(x)2 + εf(x)2f∗(x2).

Suppose next that −ζ2 is a conjugate to ζ. Then, using gn(−ζ2) = 0 and
h(ζ) = 0, one concludes that ζ is the root of the polynomial

f(x)2f∗(−x2) + ε(−1)nf(−x2)f∗(x)2.

In the case when −ζ is conjugate to ζ, from gn(ζ) = gn(−ζ) = 0 one
obtains ζnf(ζ) + εf∗(ζ) = 0 and (−ζ)nf(−ζ) + εf∗(−ζ) = 0, which yields
that ζ is a root of

f(x)f∗(−x) + (−1)n+1f(−x)f∗(x).
Finally, if a root of unity ζ of order ` satisfies gn(ζ) = 0, then gn+`(ζ) = 0.

Furthermore, if ζ is a common root of xn1f(x) + εf∗(x) and xn2f(x) +
εf∗(x), then (ζn2 − ζn1)f(ζ) = (ζn2−n1 − 1)ζn1f(ζ) = 0. By f(ζ) 6= 0, it
follows that ζn2−n1 = 1. Thus, ` | (n2 − n1) and so all such n form an
arithmetic progression with difference `, as claimed. �

3. Proofs of the theorems
Proof of Theorem 1.1. Assume that k2i 6= k2i−1 for some i in the range
1 ≤ i ≤ s. Let G be the Galois group of the normal extension of Q(α, γ)
over Q, and let σ be an automorphism of G which maps α2i−1 to α1 = α.
Then, σ(α2i) = σ(1/α2i−1) = 1/α, so that (1.2) maps into
(3.1) σ(γ) = k2i−1α+ k2i/α+ t3α3 + · · ·+ tdαd,

where t3, . . . , td ∈ Q is a permutation of the list obtained from the initial
list k1, . . . , kd by excluding the elements k2i−1 and k2i.
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Consider the following equality which is complex conjugate to (3.1):

(3.2) σ(γ) = k2i−1α+ k2i/α+ t3α3 + · · ·+ tdαd.

Since σ(γ) = σ(γ) and α2j = α2j−1 for j = 2, . . . , s, by adding (3.1)
and (3.2), we obtain

2σ(γ) = 2k2i−1α+ 2k2i/α+ w2(α3 + α4) + · · ·+ ws(αd−1 + αd),

where wj = t2j−1 + t2j for j = 2, 3, . . . , s. Adding 2(k2i − k2i−1)α to both
sides we deduce that

2σ(γ) + 2(k2i−k2i−1)α = w1(α1 +α2) +w2(α3 +α4) + · · ·+ws(αd−1 +αd),

where w1 = 2k2i.
As we already observed above, the number β1 = β = α+ 1/α = α1 + α2

is totally real with conjugates β2 = α3 + α4, . . . , βs = αd−1 + αd. Hence,
the number

2(k2i − k2i−1)α = w1β1 + w2β2 + · · ·+ wsβs − 2σ(γ)

is a linear form (with rational coefficients w1, . . . , ws,−2) in totally real al-
gebraic numbers β1, . . . , βs, σ(γ). Thus, it must be totally real itself. How-
ever, the number 2(k2i − k2i−1)α 6= 0 is not totally real, since it has a non-
real conjugate 2(k2i−k2i−1)α3. This is a contradiction which completes the
proof of the theorem. �

Proof of Theorem 1.3. Assume that there exists a smallest even degree d
(where d ≥ 8 by Corollary 1.3), such that there are no Salem numbers of
that degree d with trace 0. We will track down and ultimately eliminate all
such possible d by considering 3 sequences of polynomials, given explicitly
by Salem’s original construction [22, 23].

We start with a Salem sequence

gn(x) = xn(x3 − x− 1) + (−x3 − x2 + 1), n ≥ 2.

Then gn(x) either posseses cyclotomic factors or it is a minimal polynomial
of a Salem number of trace 0; see [3, 22, 23]. Since we have assumed that
no Salem number of degree d and trace 0 exists, the polynomial gn(x) of
degree d = deg gn = n + 3 must be reducible, that is, it must be divisible
by a cyclotomic polynomial Φ`(x), where ` ∈ N.

To find cyclotomic factors of gn(x), we apply Lemma 2.4 with f(x) =
x3−x−1 and ε = 1. The following candidates appear as factors of auxiliary
polynomials described in Lemma 2.4 (with ε = 1):

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ8(x) = x4 + 1

Φ12(x) = x4 − x2 + 1, Φ18(x) = x6 − x3 + 1,
Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.
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Since none of the five auxiliary polynomials is zero identically, this list is
complete.

To see which of these candidates actually show up, one can apply the
periodicity property stated in the second part of Lemma 2.4. After compu-
tation of gcd(gn(x),Φ`(x)), 0 ≤ n ≤ `− 1, for ` = 1, 2, 8, 12, 18, 30 it turns
out that gn(x) has cyclotomic factors precisely for the degrees d = n+ 3 in
one of the following arithmetic progressions

d ∈ {2k + 1, 8k + 2, 12k + 1, 18k + 17, 30k + 24},
where k = 0, 1, 2, . . . . As d must be even, we restrict all such possible d to
two arithmetic progressions: d ∈ {8k + 2, 30k + 24}.

Next, we take the second sequence

hn(x) = xn(x2 − x− 1)− (−x2 − x+ 1)
x− 1 , n ≥ 2.

Although now f(x) = x2 − x− 1 contributes the coefficient −1 of xn+1 to
gn(x), one regains trace 0 after division by x− 1. Let us apply Lemma 2.4
to the polynomial gn(x) = (x − 1)hn(x) with this new choice of f(x) and
ε = −1. The candidate cyclotomic factors are:

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1,

Φ6(x) = x2 − x+ 1, Φ12(x) = x4 − x2 + 1.
As above, the computation of gcd’s with first 12 polynomials of the sequence
yields the list of possible bad degrees d = n+ 1:

d ∈ {2k + 1, 3k + 2, 6k + 3, 12k + 4}.
This list also accounts for the single occurrence of the multiple factors,
namely, (x − 1)2 in g4(x). Bad degrees must be even, so we are left with
d ∈ {6k + 2, 12k + 4}.

Let us combine this with the arithmetic progressions obtained from the
first sequence:

d ∈ {8k + 2, 30k + 24} ∩ {6k + 2, 12k + 4}.
Notice that all integers 30k+ 24 are divisible by 6, while none of 6k+ 2 or
12k+4 are. Therefore, d /∈ {30k+24}, and hence d ∈ {8k+2}. Next, notice
that 12k+4 is divisible by 4 while 8k+2 is not. Consequently, d /∈ {12k+4}.
It follows that

d ∈ {8k + 2} ∩ {6k + 2} = {24k + 2}.
To eliminate this possibility, let us consider the third sequence, con-

structed with f(x) = x3 − x2 − 1 and ε = −1:

hn(x) = xn(x3 − x2 − 1)− (−x3 − x+ 1)
x− 1 , n ≥ 2.
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This time, by Lemma 2.4, the candidates for cyclotomic divisors are
Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1, Φ4(x) = x2 + 1,
Φ6(x) = x2−x+1, Φ10(x) = x4−x3 +x2−x+1, Φ18(x) = x6−x3 +1.
Now, bad degrees d = n+ 2 for this sequence hn(x) are

d ∈ {2k + 1, 3k + 1, 4k + 3, 6k + 4, 10k + 5, 18k + 6}.
This last list accounts for the factor (x − 1)2 of g5(x) for a single value
n = 5. Since d is even, d /∈ {2k + 1, 4k + 3, 10k + 5}. Since d ∈ {24k + 2}
has remainder 2 (mod 3), we deduce that d /∈ {3k + 1, 6k + 4}. Finally,
d /∈ {18k + 6}, since 24k + 2 is not divisible by 6. This exhausts the list of
possibilities, so no such bad degrees can exist. Hence, for each even d ≥ 6,
we can find a Salem number of degree d and trace 0 in one of the three
Salem sequences that were considered above. �

Proof of Theorem 1.4. Suppose that the relation (1.1) holds with some kj ∈
Z, not all zero, and conjugates αj of a Salem number α labelled as in
Theorem 1.1. Then, by Theorem 1.1, we must have k2j = k2j−1 for j =
1, . . . , s. Setting βj = α2j−1 + 1/α2j−1 for j = 1, . . . , s we find that (1.3)
holds, namely, k1β1 + k3β2 + · · ·+ k2s−1βs = 0.

In order to prove the first part of the theorem we need to show that
|k1|+ |k3|+ · · ·+ |k2s−1| ≥ 3. For a contradiction, assume that

|k1|+ |k3|+ · · ·+ |k2s−1| ≤ 2.
The case when |k2j−1| = 2 for some j (and so other k2i−1 are all zeros)
is clearly impossible, since ±2βj 6= 0. Therefore, we must have |k2i−1| =
|k2l−1| = 1, where i < l, and k2j−1 = 0 for each j 6= i, l. Dividing both
sides of the relation k2i−1βi + k2l−1βl = 0 by k2i−1, we find that βi =
−k2l−1βl/k2i−1 = ±βl. Since βi 6= βl, the only possibility is βi = −βl.
Applying to it any automorphism σ that maps βi to β1 > 2 one obtains
β1 = −σ(βl). Here, the left hand side is a real number greater than 2,
whereas the right hand side belongs to the interval (−2, 2), which is a
contradiction.

In order to prove the existence of a Salem number of degree 12 with
required linear relation among its conjugates we can take, for instance, the
following two pairs of real numbers (a, b):

(a1, b1) = (5−
√

2,−3 + 2
√

2) and (a2, b2) = (5 +
√

2,−3− 2
√

2).
Here, the first pair (a1, b1) satisfies 0 < a1 < 4 and (2.1), since b1 =

−0.171572 . . . and the left and right hand sides of (2.1) are −0.828427 . . .
and 0.828427 . . . , respectively. Thus, by Lemma 2.1, x3−a1x+b1 has three
roots in (−2, 2).

The second pair (a2, b2) satisfies 3 < a2 < 12 and (2.2), because b2 =
−5.828427 . . . and the left and right hand sides of (2.2) are −6.252637 . . .
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and −4.8284427 . . . , respectively. Hence, by Lemma 2.1, x3 − a2x+ b2 has
two roots in (−2, 2) and one greater than 2.

Consequently, their product

g(x) : = (x3 − a1x+ b1)(x3 − a2x+ b2)

= (x3 − 5x− 3 +
√

2(x+ 2))(x3 − 5x− 3−
√

2(x+ 2))
= x6 − 10x4 − 6x3 + 23x2 + 22x+ 1

has 5 roots in (−2, 2) and one greater than 2. Now,

f(x) := x6g(x+ 1/x)

equals to

x12 − 4x10 − 6x9 − 2x8 + 4x7 + 7x6 + 4x5 − 2x4 − 6x3 − 4x2 + 1.

This polynomial defines a Salem number α = 2.502568 . . . , since f is irre-
ducible over Q.

We remark than none of the choices with
√

2 replaced by
√

3 or
√

5 works.
The pairs (a1, b1) = (5−

√
3,−3 + 2

√
3) and (a2, b2) = (5 +

√
3,−3− 2

√
3)

satisfy the requirements of Lemma 2.1. However, the polynomial g (and so
f) is reducible:

g(x) : = (x3 − 5x− 3 +
√

3(x+ 2))(x3 − 5x− 3−
√

3(x+ 2))
= x6 − 10x4 − 6x3 + 22x2 + 18x− 3
= (x2 − 3)(x4 − 7x2 − 6x+ 1).

Similarly, with the pairs (a1, b1) = (5 −
√

5,−3 + 2
√

5) and (a2, b2) =
(5 +

√
5,−3 − 2

√
5) one also obtains g with 5 roots in (−2, 2) and one in

(2,+∞), but g (and so f) is reducible:

g(x) : = (x3 − 5x− 3 +
√

5(x+ 2))(x3 − 5x− 3−
√

5(x+ 2))
= x6 − 10x4 − 6x3 + 20x2 + 10x− 11
= (x2 + x− 1)(x4 − x3 − 8x2 + x+ 11).

By Corollary 1.2, there no Salem numbers of degree 4 or 6 with a non-
trivial linear relation among its conjugates. To give the example of a Salem
number of degree 8 with nontrivial linear relation among its conjugates we
can take, for instance, h(x) := x2 + 4x + 1 with roots γ1 = −2 −

√
3 and

γ2 = −2 +
√

3 satisfying the conditions of Lemma 2.3. Then,

f(x) : = x4h
(
(x+ 1/x)(1− x− 1/x)

)
= x8 − 2x7 + x6 − 2x5 + x4 − 2x3 + x2 − 2x+ 1

is irreducible. Hence, by Lemma 2.3, f defines a Salem number α =
1.994004 . . . of degree 8 whose conjugates satisfy (2.6) with k = 2.
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As above, not every choice of an irreducible h produces the irreducible
polynomial f . For example, selecting h(x) := x2 + 4x + 2 whose roots
γ1 = −2−

√
2 and γ2 = −2 +

√
2 satisfy the conditions of Lemma 2.3, we

get the polynomial
f(x) : = x4h

(
(x+ 1/x)(1− x− 1/x)

)
= x8 − 2x7 + x6 − 2x5 + 2x4 − 2x3 + x2 − 2x+ 1
= (x4 + 1)(x4 − 2x3 + x2 − 2x+ 1),

which is reducible. �
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