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Computing L-invariants via the
Greenberg–Stevens formula

par Samuele ANNI, Gebhard BÖCKLE, Peter GRÄF et Álvaro
TROYA

Résumé. Dans cet article, nous montrons comment calculer les pentes des
invariants-L p-adiques de formes modulaires de niveaux et de poids arbi-
traires en appliquant la formule de Greenberg–Stevens. Notre méthode re-
pose sur les travaux de Lauder et Vonk sur le calcul de la série caractéristique
réciproque de l’opérateur Up sur les formes modulaires surconvergentes. En
utilisant les dérivées supérieures de cette série, nous construisons un polynôme
dont les racines sont exactement les invariants-L apparaissant dans l’espace
correspondant des formes modulaires de signe fixé pour l’action de l’involution
d’Atkin–Lehner en p. En outre, nous montrons comment calculer ce polynôme
efficacement. Dans la dernière section, pour des petits nombres premiers p,
nous donnons des évidences numériques en faveur de l’existence des relations
entre les pentes des invariants-L de différents niveaux et poids.

Abstract. In this article, we describe how to compute slopes of p-adic L-
invariants of Hecke eigenforms of arbitrary weight and level by means of the
Greenberg–Stevens formula. Our method is based on the work of Lauder and
Vonk on computing the reverse characteristic series of the Up-operator on
overconvergent modular forms. Using higher derivatives of this series, we con-
struct a polynomial whose roots are precisely the L-invariants appearing in
the corresponding space of modular forms with fixed sign of the Atkin–Lehner
involution at p. In addition, we describe how to compute this polynomial effi-
ciently. In the final section, we give computational evidence for relations be-
tween slopes of L-invariants of different levels and weights for small primes p.

1. Introduction
Let f be a newform of even weight k ≥ 2 for Γ0(pN), where p is prime and

(N, p) = 1. Let χ be a Dirichlet character of conductor prime to pN with
χ(p) = 1. By the work of Mazur and Swinnerton–Dyer, see for example [19],
there exists a p-adic L-function Lp(f, χ, s) attached to f that interpolates
the algebraic parts Lalg(f, χ, j) for j ∈ {1, . . . , k−1} of the special values of
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the classical L-function attached to f . The p-adic L-invariant Lp(f) ∈ Cp
attached to f satisfies

L′p(f, χ, k2 ) = Lp(f) · Lalg(f, χ, k2 )
and it depends only on the local Galois representation attached to f .
Mazur, Tate and Teitelbaum conjectured that such invariant should ex-
ist. Afterwards, several possible candidates were proposed. The fundamen-
tal breakthrough in relating these candidates to one another and proving
the above formula, due to Greenberg and Stevens [15], is the connection be-
tween Lp(f) and the (essentially unique) p-adic family of eigenforms passing
through f . If we denote this family by

fκ =
∞∑
n=1

an(κ)qn with fk = f,

where the coefficients an(κ) are rigid analytic functions on a disc containing
k in the weight space Homcont(Z×p ,Gm), then the relation is given as

Lp(f) = −2 dlog(ap(κ))|κ=k.

A more detailed account of the history of L-invariants can be found in [12].
Recently, there has been a lot of interest in computing p-adic L-invar-

iants. In [14], the third author conjectured some relations between (slopes
of) L-invariants of different levels and weights for p = 2. In [5], Bergdall
explains relations between slopes of L-invariants and the size of the p-
adic family passing through the given newform. On a different note, a main
motivation to understand and compute L-invariants arises from the study of
coefficient fields of classical newforms. In particular, Buzzard asked whether
there exists a bound BN,p for all Hecke eigenforms f of level Γ1(N)∩Γ0(p)
and any weight k ≥ 2 such that [Qf,p : Qp] ≤ BN,p, where Qf,p is the
coefficient field of f completed at a prime dividing p, see [6, Question 4.4].
For N = 1 and p ≤ 7 Chenevier has shown ([8, Corollaire p. 3]) that Qf,p

is either Qp(ap(f)) if f is old at p, or Qp(Lp(f)) if f is new at p, where
ap(f) is the p-th coefficient of the q-expansion of f at infinity. Therefore,
Buzzard’s bound BN,p would constrain the degrees of Lp(f) and ap(f) over
Qp for all f as long as N and p are fixed.

In this article, we describe a procedure for computing L-invariants via
the Greenberg–Stevens formula, building on the work of Lauder and Vonk
on the action of the Up-operator on overconvergent modular forms. In [17,
Section 3.3.4] Lauder describes how to compute the L-invariant from the
first derivative of the (inverse) characteristic series of the Up-operator if
there is a unique split multiplicative cusp form in the given weight, using
a formula of Coleman, Stevens and Teitelbaum [11]. The main aim of this
article is to extend this method to weights k in which there is more than
one split multiplicative cusp form. For this purpose, we explain how to
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efficiently compute higher derivatives of the characteristic series and how
the L-invariants can be read off from these derivatives. In order for this ap-
proach to work and not increase too much the precision required to perform
the computations, one first needs to decompose the space of p-newforms by
their Atkin–Lehner eigenvalue at p. Since the needed precision grows with
the dimension of these subspaces, we give explicit dimension formulas, anal-
ogous to the ones presented in [18].

Let us remark that the procedure presented in [14] computes more data
than the present paper, as the L-invariants in [14] are realized as the eigen-
values of a “Hecke operator”, called the L-operator, whose matrix is com-
puted explicitly. However, the procedure is naturally more restricted, since
it involves the Jacquet-Langlands correspondence and, therefore, it needs
an auxiliary prime in the level. Another approach (unpublished) due to
R. Pollack is to compute the L-invariants directly in terms of p-adic and
classical L-values via modular symbols. Yet another approach is due to X.
Guitart and M. Masdeu, see [16].

The layout is as follows. In Section 2 we recall briefly Coleman classicality
and the main result of [17], which are going to be used in several central
parts of this article. In Section 3, we describe how to generalize a formula of
Coleman, Stevens and Teitelbaum [11] proving the existence of a polynomial
Qεp,k, built from higher derivatives of the reverse characteristic series of
the Up operator on the space of overconvergent p-adic cusp forms of level
Γ0(pN), and whose roots are precisely the L-invariants of level Γ0(pN) and
Atkin-Lehner eigenvalue ε. In Sections 4 and 5 we show how to compute
this polynomial extending a method of Lauder [17] and we give dimension
formulae for the relevant spaces of classical modular forms. In Section 6 we
present the data collected together with observations on the slopes.

All computations have been done using a magma implementation of the
algorithms. The code relies on algorithms of Lauder and Vonk and is avail-
able on request.

Acknowledgments. We would like to thank Alan Lauder, Robert Pollack,
Jan Vonk and the anonymous referee for helpful remarks and suggestions.
We also thank John Cremona for providing access to the servers of the
Number Theory Group at the Warwick Mathematics Institute.

2. Classical and overconvergent modular forms
Throughout this article, let p be prime and let N be a positive integer

coprime to p. Let W denote the even p-adic weight space. Thus, the Cp-
points of W are continuous characters κ : Z×p → C×p with κ(−1) = 1. For
each κ ∈ W, let S†κ(Γ0(pN)) denote the space of overconvergent p-adic
cusp forms of weight κ, see [10]. This space is equipped with the action
of the compact operator Up. For each integer k we realize the space of
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classical cusp forms Sk(Γ0(pN)) as a Up-stable subspace of S†k(Γ0(pN)) by
considering the associated weight z 7→ zk in W. Let

P (k, t) := det(1− t Up | Sk(Γ0(pN))),
P †(κ, t) := det(1− t Up | S†κ(Γ0(pN))),

be the reverse characteristic polynomial (respectively series) of Up. We de-
note by O(W){{t}} the ring of entire functions with coefficients in O(W).
Then, if we write

P †(κ, t) = 1 +
∞∑
n=1

bn(κ)tn ∈ O(W){{t}},

by [10, Appendix I] each function κ 7→ bn(κ) is defined by a power series
with coefficients in Zp. More precisely, if we write W =

⊔
εWε, where the

union is formed over the even characters ε : (Z/2pZ)× → C×p , then we have
κ ∈ Wε if and only if the restriction of κ to the torsion subgroup of Z×p is ε.
For a fixed topological generator γ of 1 + 2pZp, each Wε is an open p-adic
unit disc with coordinate wκ = κ(γ)−1. Then, for each such ε, there exists

P †,ε(w, t) = 1 +
∞∑
n=1

bεn(w)tn ∈ Zp[[w]]{{t}}

such that P †(κ, t) = P †,ε(wκ, t) for κ ∈ Wε. In the sequel, we suppress
ε in the notation. The following theorem, due to Coleman, links P (k, t)
and P †(k, t). For a detailed account in the cuspidal situation, see [4, Sec-
tion 2.1.2].

Theorem 2.1 (Coleman classicality [9, Theorem 6.1]). Let α < k−1. Then
the reciprocal roots of P †(k, ·) of valuation α are precisely the reciprocal roots
of P (k, ·) of valuation α. Consequently, if m ≤ k − 1 then

P (k, t) ≡ P †(k, t) mod pm.

Remark 2.2. For p ≥ 5, the algorithm of Lauder presented in [17] com-
putes P †(k, t) mod pm for given k and m and runs in polynomial time
with respect to p,N and m, and linear time in log(k). This algorithm was
extended by Vonk in [21] to include the primes p = 2, 3. These algorithms
give us the input for our subsequent computations.

3. L-invariants and derivatives of the characteristic series of Up

For a fixed positive even integer k, in [11] Coleman, Stevens and Teit-
elbaum showed that whenever there is a unique split multiplicative cusp
form f in Sk(Γ0(pN)), it is possible to compute its L-invariant as

Lp(f) = −2ap(f)∂κP
†(k, t)

∂tP †(k, t)

∣∣∣∣
t=ap(f)−1
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where ap(f) is the p-th coefficient of the q-expansion of the newform.
Clearly, the formula above works only in the special case where the space
of split multiplicative forms in Sk(Γ0(pN)) is 1-dimensional, as otherwise
the denominator has a zero at t = ap(f)−1. In [17], Lauder uses the formula
in this special case to compute the L-invariant.

The aim of this section is to remove the restriction on the dimension.
If we denote by Sk(Γ0(pN))p−new the subspace of cusp forms which are
new at p, then our approach can be described as follows. First we split
Sk(Γ0(pN))p−new into eigenspaces for the Atkin–Lehner operator at p. Then
use higher derivatives to distinguish among the zeros of P †(k, t) which cor-
respond to different eigenforms, i.e. to separate the p-adic families passing
through the different eigenforms.

We begin by recalling the definition of p-adic L-invariants. Note that for
each f ∈ Sk(Γ0(pN))p−new, we have

Upf = −p(k−2)/2Wpf,

whereWp denotes the Atkin–Lehner involution acting on Sk(Γ0(pN))p−new.
Let f ∈ Sk(Γ0(pN))p−new be an eigenform for the Hecke operators away
from N . Then f has an associated L-invariant Lp(f) ∈ Cp. By a generaliza-
tion of the Greenberg–Stevens formula, see [12], Lp(f) is given as follows.
The eigensystem (away from N) attached to f defines a classical point on
the eigencurve CN of level Γ0(p)∩Γ1(N), see [7]. There is a p-adic Coleman
family fκ =

∑∞
n=1 an(κ)qn through f (i.e. an irreducible component of a

small affinoid neighborhood of the point attached to f in CN that maps
isomorphically onto an open affinoid subdomain of the weight space) of
constant slope since the weight map is étale at the point attached to f ,
see [5, Proposition 2.6]. In particular, via this p-adic family, the rigid mor-
phism ap(κ) on CN defines a morphism on the affinoid subdomain of the
weight space. The L-invariant attached to f is then given by

Lp(f) = −2 dlog(ap(κ))|κ=k.

Let us point out that, for κ sufficiently close to k, the eigenvalue ap(κ)
in level Γ0(p) ∩ Γ1(N) appears in fact in level Γ0(pN); i.e. on the space
S†κ(Γ0(pN)). The expositions in [5] and [4] provide a nice summary of the
constructions that are relevant in our setting.

Before we can study the relation between L-invariants and the charac-
teristic series of Up, we need some preparations.

Lemma 3.1. Let ε be an eigenvalue of the Atkin–Lehner operator Wp act-
ing on Sk(Γ0(pN)). Let aεp,k = −εp(k−2)/2. Then

Sk(Γ0(pN))p−new,ε = Sk(Γ0(pN))Up=aε
p,k ,
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where Sk(Γ0(pN))p−new,ε denotes the subspace of Sk(Γ0(pN))p−new on which
Wp has eigenvalue ε, and Sk(Γ0(pN))Up=aε

p,k is the subspace of Sk(Γ0(pN))
where the Up operator acts as multiplication by aεp,k.

Proof. By definition

Sk(Γ0(pN))p−new,ε ⊆ Sk(Γ0(pN))Up=aε
p,k .

In order to show the other inclusion, let us first remark that if a cusp form
in Sk(Γ0(pN))Up=aε

p,k is new at p, then clearly it is an eigenform forWp with
eigenvalue ε. Let us now look at the space of p-oldforms Sk(Γ0(pN))p−old.
Each eigenvalue of Tp acting on Sk(Γ0(N)) gives rise to two Up-eigenvalues
on Sk(Γ0(pN))p−old and by definition all eigenvalues of p-oldforms arise
in this way. Let α be a Tp-eigenvalue. The corresponding Up-eigenvalues
are the roots of x2 − αx + pk−1. Now, by a deep theorem of Deligne,
these Up-eigenvalues have complex absolute value p(k−1)/2, so they cannot
be aεp,k. �

Let us remark that Sk(Γ0(pN))p−new has a basis of eigenforms for the
Hecke operators away from N . These split into two orbits with respect to
the eigenvalues of the Atkin–Lehner involution.

From now on we fix an eigenvalue ε of the Atkin–Lehner involution Wp

and set dε = dimSk(Γ0(pN))p−new,ε. Let f1, . . . , fdε denote the basis of
Sk(Γ0(pN))p−new,ε. For each i ∈ {1, . . . , dε}, we denote by ai(κ) the p-th
coefficient of the Coleman family passing through fi as above.

Proposition 3.2. Let ε be an eigenvalue of the Atkin–Lehner operator Wp

acting on Sk(Γ0(pN))p−new, then

P †(k, t) = (1− aεp,kt)dεC(k, t),

where C(k, (aεp,k)−1) 6= 0.

Proof. For α < k − 1, by Coleman classicality, Theorem 2.1, the set of
reciprocal roots of P †(k, t) of slope α is the set of reciprocal roots of P (k, t)
of slope α. Therefore, Lemma 3.1 implies the claim. �

Proposition 3.3. There exists a small neighborhood V ⊂ W of k such that
in O(V ){{t}} we have

P †(κ, t) =
dε∏
i=1

(1− ai(κ)t) · C(κ, t).

where the function C(κ, t) specializes to the corresponding function in
Proposition 3.2 for κ = k.
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Proof. By [3, Proposition II.1.12], we find a small neighborhood V of k such
that in O(V ){{t}} we have

P †(κ, t) = F (κ, t) ·G(κ, t),
where F (κ, t) ∈ O(V )[t] whose reciprocal roots are all those of P †(κ, t) of
valuation less or equal to k − 1 (with the same multiplicities), F (κ, 0) = 1
and G(κ, t) ∈ O(V ){{t}}. After possibly shrinking V , the Coleman families
through the fi do not intersect and ai(κ) ∈ O(V ). Then, by construction,
these are the reciprocal roots of F (κ, t) whose multiplicities add up to dε.
Now factoring F (κ, t) gives the result. �

In the sequel, for • ∈ {κ, t}, let us denote by ∂n•P †(k, t) the n-th partial
derivative of P †(κ, t) with respect to • at the point (k, t), viewed as an
element in Zp{{t}}.

Corollary 3.4. For n ≤ dε and • ∈ {κ, t}, we have

∂n•P
†(k, t) = (1− aεp,kt)dε−n · C(n)

• (k, t)

where C(n)
• (k, (aεp,k)−1) equals

n ! · C(k, (aεp,k)−1)
∑

1≤m1<···<mn≤dε

n∏
j=1

∂•(1− amj (κ)t)
∣∣∣∣
κ=k,t=(aε

p,k
)−1
.

Proof. By Proposition 3.3, we have

P †(κ, t) =
dε∏
i=1

(1− ai(κ)t) · C(κ, t)

on a small neighborhood of k. Thus, the n-th partial derivative of P † for
• ∈ {κ, t} satisfies

∂n•P
†(κ, t) =

∑
i1+i2+···+idε+1=n

( n
i1,i2,...,idε+1

)
·
dε∏
j=1

∂
ij
• (1− aj(κ)t) · ∂idε+1

• C(κ, t).

For n ≤ dε, let us split the sum into Σ≤1(κ, t) and Σ>1(κ, t) as follows:

Σ≤1(κ, t) =
∑

i1+i2+···+idε+1=n,
ij≤1 ∀ j

( n
i1,i2,...,idε+1

)
·
dε∏
j=1

∂
ij
• (1− aj(κ)t) · ∂idε+1

• C(κ, t),

Σ>1(κ, t) =
∑

i1+i2+···+idε+1=n,
ij>1 for some j

( n
i1,i2,...,idε+1

)
·
dε∏
j=1

∂
ij
• (1− aj(κ)t) · ∂idε+1

• C(κ, t).

We claim that Σ>1(k, t) = (1− aεp,kt)dε−n+1 ·C(n)
>1 (k, t) for some C(n)

>1 (k, t).
If i` > 1 for some ` ∈ {1, . . . , dε + 1}, we must have ij = 0 for more than
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dε−n+ 1 many j’s, since all ij are non-negative, their sum equal to n and
the cardinality of the range is dε+1. Specializing at κ = k, this immediately
implies the result. We can proceed in a similar fashion to show that the
terms with idε+1 = 1 in Σ≤1 satisfy an analogous formula. Therefore, we
are left with the term

n ! · C(κ, t)
∑

i1+···+idε=n,
ij≤1 ∀ j

dε∏
j=1

∂
ij
• (1− aj(κ)t).

Let us observe that after separating the terms with ij = 0 and specializing
at κ = k and we obtain

n ! · C(k, t) · (1− aεp,kt)dε−n
∑

1≤m1<···<mn≤dε

n∏
j=1

∂•(1− amj (κ)t)
∣∣∣∣
κ=k

.

Putting these terms together completes the proof. �

Remark 3.5. In the spirit of the above proposition, one could also analyze
the behavior of mixed derivatives with respect to κ and t. However, for our
applications only the above derivatives are relevant.

Finally we can state the main result of this section:

Theorem 3.6. Let ε be an eigenvalue of the Atkin–Lehner operator Wp

acting on Sk(Γ0(pN))p−new, then the monic polynomial

Qεp,k(x) =
dε∑
n=0

cnx
dε−n ∈ Qp[x],

where

cn := 2n(aεp,k)n
(
dε
n

)
∂nκP

†(κ, t)
∂nt P

†(κ, t)

∣∣∣∣
κ=k, t=(aε

p,k
)−1
,

satisfies

Qεp,k(x) =
dε∏
i=1

(x− Lp(fi)).
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Proof. Taking the ratio of the n-th partial derivatives of P †(κ, t) and ap-
plying Corollary 3.4 we obtain

∂nκP
†(κ, t)

∂nt P
†(κ, t)

∣∣∣∣
κ=k, t=(aε

p,k
)−1

=
∑

1≤m1<···<mn≤dε

∏n
j=1 ∂κ(1− amj (κ)t)∑

1≤m1<···<mn≤dε

∏n
j=1 ∂t(1− amj (κ)t)

∣∣∣∣
κ=k, t=(aε

p,k
)−1

=
∑

1≤m1<···<mn≤dε

∏n
j=1(−a′mj

(k)/aεp,k)∑
1≤m1<···<mn≤dε

(−aεp,k)n

=
(
dε
n

)−1

(aεp,k)−n
∑

1≤m1<···<mn≤dε

n∏
j=1

a′mj
(k)

aεp,k
.

Multiplying both sides by 2n(aεp,k)n
(dε

n

)
yields

cn = 2n(aεp,k)n
(
dε
n

)
∂nκP

†(κ, t)
∂nt P

†(κ, t)

∣∣∣∣
κ=k, t=(aε

p,k
)−1

=
∑

1≤m1<···<mn≤dε

n∏
j=1

(2 dlog(amj (κ))|κ=k)

The last term is precisely the (dε − n)-th coefficient of the polynomial
dε∏
i=1

(x− Lp(fi)) ,

which completes the proof. �

Remark 3.7. Note that in the above proof we used that C(n)
t (k, (aεp,k)−1) 6=

0 for all n ∈ {1, . . . , dε}. However, C(dε)
κ (k, (aεp,k)−1) 6= 0 is equivalent to

all of the L-invariants L(fi) being non-zero. While all our computational
results support this claim, we are not aware of a proof of this statement.
However, in the special case where fi is of weight 2 and corresponds to
an elliptic curve, this follows from a deep result in transcendental number
theory stating that the Tate parameter is transcendental, see [2].

4. Dimension formulae
In this section we show how to compute the dimension dε of the cusp

form space Sk(Γ0(pN))p−new,ε which appears in Section 3. Let us recall that
N is a positive integer coprime to p. As before, we will denote by Wp the
p-th Atkin–Lehner involution and whenever Wp is an operator on a vector
space V , we will denote by trVWp its trace on V .
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Proposition 4.1. The trace of the Atkin–Lehner operator Wp satisfies
trSk(Γ0(pN))p−newWp = trSk(Γ0(pN))Wp.

Proof. The cusp form space Sk(Γ0(pN)) decomposes into a p-new and a
p-old component Sk(Γ0(pN)) = Sk(Γ0(pN))p−new ⊕ Sk(Γ0(pN))p−old. The
statement is then equivalent to say that trSk(Γ0(pN))p−oldWp = 0 and this
follows from [1, Lemma 26]. �

In the case of N squarefree, building on previous works of Yamauchi,
Skoruppa and Zagier, Martin gave a formula [18, Equation (1.6)] for the
trace of the Atkin–Lehner operator Wp on Sk(Γ0(pN)). In the simple case
where N = q > 3 is a prime and p > 3, we have

trSk(Γ0(pq))Wp = 1
2(−1)ka(p, q)h(Q(

√
−p))

(
1 +

(∆p

q

))
+ δk,2,

where a(p, q) is 1, 4 or 2 for p congruent to 1 or 5, 3, 7 modulo 8 respectively,
h(Q(

√
−p)) denotes the class number of Q(

√
−p) and ∆p its discriminant,

the Legendre symbol for ∆p and q is denoted by
(

∆p

q

)
, and δk,2 is 1 if k = 2

and 0 otherwise.
By simple algebraic manipulations, we have the following

Corollary 4.2. Let ε be an eigenvalue of the Atkin–Lehner operator Wp

and set d := dimSk(Γ0(pN))p−new. Then

dε = 1
2
(
d+ ε trSk(Γ0(pN))Wp

)
Let us remark that we can compute d = dimSk(Γ0(pN))p−new easily us-

ing the obvious formula d = dimSk(Γ0(pN))−2 dimSk(Γ0(N)). In Table 4.1
there are dimensions of Sk(Γ0(pN))p−new and of Sk(Γ0(pN))p−new,ε for
some levels and weights, where, for simplicity, we set Tr := trSk(Γ0(pN))Wp.

Table 4.1.

p N k Tr d d+1 d−1
2 1 20 0 2 1 1
2 1 40 1 3 2 1
3 1 20 1 3 2 1
3 1 40 0 6 3 3
13 1 20 1 19 10 9
13 2 20 1 57 29 28
13 2 40 1 117 59 58
7 11 200 2 1194 598 596
7 11 400 2 2394 1198 1196
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5. Computing Qε
p,k

The main difficulty in computing Qεp,k is given by the partial derivatives,
as shown in Theorem 3.6. For the denominators, this is straightforward
by Remark 2.2, since we only use formal differentiation with respect to t.
However, the computation of the numerators is more involved.

In [17, Lemma 3.10] Lauder explains a method using finite differences
for the first derivative. The aim of this section is to generalize this method
to derivatives of higher order. The study of finite differences in this context
is due to Gouvêa and Mazur, see [13].

Let us first observe that it is enough to work only at classical points
since, by definition, we have

∂nκP
†(k, t) = lim

m→∞
∂n−1
κ P †(k + (p− 1)pm, t)− ∂n−1

κ P †(k, t)
(p− 1)pm .

The finite differences used to approximate ∂nκP †(k, t) are defined as follows.
Let sm = (p− 1)pm and set

∂nκP
†(k, t)m := s−nm

n∑
j=0

(−1)j
(
n

j

)
P †(k + (n− j)sm, t).

Theorem 5.1. We have
∂nκP

†(k, t)m+1 ≡ ∂nκP †(k, t)m mod pm+1.

Therefore, ∂nκP †(k, t) ≡ ∂nκP †(k, t)m mod pm+1.

Proof. Let P †(k, t) =
∑∞
i=0 bi(k)ti. In the sequel we fix a choice of i and

write b(k) = bi(k). Then, for sm = (p− 1)pm it is enough to show
n∑
j=0

(−1)j
(
n

j

)
b(k + (n− j)psm) ≡ pn

n∑
j=0

(−1)j
(
n

j

)
b(k + (n− j)sm)

modulo p(n+1)(m+1). We define the difference functions δν(b, k) recursively
by

δ1(b, k) := b(k + sm)− b(k),
δν(b, k) := δν−1(b, k + sm)− δν−1(b, k) for ν ≥ 2.

By [13, Theorem 2], we have δν(b, k) ≡ 0 mod pν(m+1). Thus, rewriting the
above equation, it suffices to show that

n∑
j=0

(−1)j
(
n

j

)
b(k + (n− j)psm)− pn

n∑
j=0

(−1)j
(
n

j

)
b(k + (n− j)sm)

is a Z-linear combination of δν(b, k) for ν ≥ n+ 1. By definition, we have

δν(b, k) =
ν∑
j=0

(
ν

j

)
(−1)jb(k + (ν − j)sm).
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Let X be a variable and write

(X − 1)ν =
ν∑
j=0

(
ν

j

)
(−1)jXν−j .

Then, after substituting X l for b(k + lsm), we just need to prove that the
polynomial R(X) = (Xp − 1)n − pn(X − 1)n is a Z-linear combination of
(X − 1)ν for ν ≥ n + 1 or equivalently, that R(X) vanishes to order at
least n+ 1 at X = 1. Clearly, R(X) vanishes to order at least n at X = 1.
Moreover, we have

R(X)
(X − 1)n =

(
Xp − 1
X − 1

)n
− pn =

(
1 +X + · · ·+Xp−1

)n
− pn.

and by specializing at X = 1, we see that R(X) vanishes to order at least
n+ 1. This concludes the proof of the first part of the theorem. The second
part is an immediate consequence, since the higher derivatives of every
function given by a power series are approximated by finite differences on
a small neighbourhood. �

6. Computations
6.1. Overview of the code. The algorithm implemented computes the
polynomial Qεp,k, defined in Section 3. The input of the algorithm are a
prime p, a positive integer N coprime to p, an even integer k and a positive
integer m, the desired precision.

The code works in a straightforward manner following the steps below:
Step 1: Find the Atkin–Lehner decomposition of the space. We will decom-

pose the space according to the eigenvalues of the Atkin–Lehner
operator Wp, since we will work on each Sk(Γ0(pN))p−new,ε sepa-
rately, where ε is one of such eigenvalues. In this step, we actually
only compute the dimension dε of such eigenspaces. As shown in
Section 4, this computation can be done via Corollary 4.2, Equa-
tion (1.6) in [18] and by recursion.

Step 2: Compute evaluations of the reverse characteristic series of the
Up operator on overconvergent modular forms at the weights
{k, k + sm, . . . , k + dεsm} to precision (dε + 1)m + 1, where sm =
(p− 1)pm. We performed this step using algorithms of Lauder [17]
and Vonk [21], see Remark 2.2.

Step 3: For each subspace Sk(Γ0(pN))p−new,ε and 1 ≤ n ≤ dε, compute
∂n•P

†(k, t), the partial derivative with respect to • of P †(κ, t) at
the point (k, t) viewed as an element in Zp{{t}}. By Theorem 5.1,
Step 2 provides all data needed for the derivative in κ, which is the
relevant piece.

Step 4: Build the quotient Qεp,k of both derivatives, if possible. If the pre-
cision is too low, this step cannot be performed. In this case, or if
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the resulting precision of the coefficients cn as in Theorem 3.6 is
less than m, restart Step 2 with m replaced by m+ 10.

Some examples of the output are presented in the next subsection. Build-
ing from the output of the algorithm, we analyzed the distribution of (the
slopes of) L-invariants for increasing weight. We tabled the results obtained
in Subsection 6.4 and we formulated some speculations, based on the data
collected, in Subsection 6.3.
Remark 6.1. It should be pointed out that, once the reverse characteristic
series of Up is obtained, our algorithm is independent of the work of Lauder
and Vonk, and can thus be combined with different methods of computing
the series. The main bottleneck of our computations is the p-adic precision
to which the coefficients cn of Qεp,k have to be computed. As shown in Theo-
rem 5.1, this precision depends on the dimension dε of the relevant space of
modular forms. This leads to work with very large matrices of Up on over-
convergent modular forms in the algorithms of Lauder and Vonk, making
even the computation of the characteristic series rather time-consuming.
6.2. Examples. All of the following examples were computed using an
Intel® Xeon® E5-2650 v4 CPU processor with 512 GB of RAM memory.
Example 6.2. Let us consider the space S4(Γ0(6)). We have

dimS4(Γ0(6))p−new,ε > 0 for (p, ε) ∈ {(2, 1), (3, 1)}.
In both cases the space is one-dimensional, i.e. the polynomial Qεp,4(X) ∈
Qp[X] is given by a linear factor with the L-invariant of the unique newform
in S4(Γ0(6))p−new as a zero. Modulo 221, respectively 321, we have
Q+1

2,4(X) = X + 94387 · 2
= X − (2+23+24+27+29+210+211+212+216+218+219+220),

Q+1
3,4(X) = X − 41502709

= X − (1+32+2 · 37+38+2 · 39+2 · 313+2 · 314+2 · 315).
The latter example was also computed in [20] and in [14]. The duration of
the above computations was 1.8 and 5.6 seconds respectively.
Example 6.3. Let p = 7, N = 11 and k = 2. The space S2(Γ0(77))7−new,ε

is two-dimensional for ε = +1 and three-dimensional for ε = −1. The
coefficients of the following polynomials have been reduced modulo 721.
Q+1

7,2(X) = X2 + 526982521374955003 · 7 ·X + 192454376115114681 · 72

Q−1
7,2(X) = X3 + 222104449450143105 · 7 ·X2

− 103688086480269397 · 72 ·X − 39596022807935252 · 73

The computation required approximately 2 hours. The slopes can be com-
puted to be [12] and [13] respectively.
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In this case, we have S2(Γ0(77))7−new,ε = S2(Γ0(77))new,ε for ε = ±1.
The space S2(Γ0(77))new,+1 is spanned by two rational newforms f1 and
f2. These correspond to the isogeny classes of elliptic curves with Cremona
labels 77a and 77c and their L-invariants are modulo 710 given by

L7(f1) = 2 · 7+3 · 72+4 · 73+74+75+4 · 77+79,

L7(f2) = 4 · 7+2 · 72+6 · 73+5 · 74+6 · 75+6 · 76+3 · 77+3 · 78+79.

The L-invariants attached to elliptic curves can be computed, for example,
by a build-in method in terms of Tate-parameters in SageMath. In the two
cases above, one first has to apply a quadratic twist, as the curves do not
have split-multiplicative reduction at 7.

The space S2(Γ0(77))new,−1 is spanned by a rational newform f and two
newforms g1 and g2 with coefficient field K = Q(

√
5). The newform f

corresponds to the isogeny class of elliptic curves with Cremona label 77b,
which has split multiplicative reduction at 7. Its L-invariant is modulo 710

given by

L7(f) = 3 · 7+72+2 · 73+5 · 74+4 · 75+76+4 · 77+78+3 · 79.

If we divide the polynomialQ−1
7,2(X) by (X−L7(f)), we thus obtain (modulo

711)

(X − L7(g1)) · (X − L7(g2)) = X2 + 225931960 · 7 ·X + 21342634 · 72.

This polynomial is in fact irreducible over Q7, showing that the L-invariant
L7(g1) generates the quadratic unramified extension of Q7, and similarly
for L7(g2). We have computed the coefficient fields Qg1,7 and Qg2,7 and
obtained that Qgi,7 = Q7(L7(gi)) for i = 1, 2. This is a first example of
forms of higher level (N = 11), where Chenevier’s description (for N = 1)
of the local coefficient field, mentioned in the introduction, still holds.

6.3. Observations collected. Given a positive even integer k, we denote
by νεL(k, p,N) the finite list of slopes of the p-adic L-invariants attached
to forms in Sk(Γ0(pN))p−new,ε ordered in decreasing order, where ε is an
eigenvalue of the Atkin–Lehner operator Wp acting on Sk(Γ0(pN))p−new.
Note that this differs from the tables in [14], where the space is decomposed
with respect to the Atkin–Lehner involution at N .

The observations collected are based on the data and on the tables pre-
sented in the next section.

We begin with the case p = 2, that was extensively studied in [14].
There, several relations between slopes of different level and weights were
conjectured for levels N = 3, 5, 7. Table 6.1 provides data for the case
N = 1, which is not accessible by the methods in [14]. The observations
lead us to the following analogous conjecture.
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Conjecture 6.4 (p = 2).
(a) For k ∈ 2 + 4Z, k ≥ 10 and ε ∈ {±1}, we have

νεL(k, 2, 1) = ν−εL (k + 6, 2, 1).

(b) For every even integer k, the final min{d+1, d−1} slopes in ν+
L (k,2,1)

and ν−L (k, 2, 1) agree.

Table 6.1 verifies this statement up to k = 70 computationally. Our
observations are in line with similar observations in [14]. The table also
provides the missing data for [14, Conjecture 5.6(ii)] stating that the slopes
appearing in level 7 are the union of (two copies) of the slopes in levels 1
and 3.

The case p = 3 and N = 1 is treated in Table 6.2. Again we observe rela-
tions between various different slopes that do not yet have any theoretical
interpretation. We collect our observations in the following conjecture.

Conjecture 6.5 (p = 3).
(a) For k ∈ 2 + 6Z, k ≥ 8 and ε ∈ {±1}, we have

νεL(k, 3, 1) = νεL(k + 4, 3, 1).
(b) For every even integer k, the final min{d+1, d−1} slopes in ν+

L (k,3,1)
and ν−L (k, 3, 1) agree.

Interestingly, the numbers 4 and 6 from Conjecture 6.4(a) are essentially
switched here: we have relations between k and k + 4 when considering k
mod 6. The same is true for the Atkin–Lehner sign, since here we always
have relations between slopes of the same sign. While Conjecture 6.5 is very
similar to Conjecture 6.4, we should point out that here there are slopes
that do not have (obvious) relations to other slopes. These are the slopes
for k ∈ 4 + 6Z. We still observe that for example the slopes for k = 10 and
k = 16 only differ by −1. Similarly, the slopes for k = 22 and k = 28 are
very similar. However, we are not able to formulate a precise conjecture.

The data in Tables 6.3, 6.4 and 6.5 shows various relations between slopes
of different weights supporting conjectural connections between them, anal-
ogous to the conjectures presented above. Moreover, after possibly removing
oldforms, the analogous observation as in part (b) of the Conjectures 6.4
and 6.5 is still present in the data presented in Tables 6.6 and 6.7. We are
able to say even more, namely that the pairs in observation (b) arise from
different Galois orbits. Let for example p = 13 and k = 10, the correspond-
ing space of modular forms consists of two Galois orbits of dimensions 4
and 5. Each of the orbits makes up one of the two columns in Table 6.5.
Moreover, within each orbit (aside from the first slope) all slopes are dis-
tinct.
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The data computed for p = 2 and N = 3 matches with the one presented
in [14] and we observe again a relation between the slopes, see [14, Conjec-
ture 5.2]. In all cases, it is an interesting question to analyze the growth of
the slopes with the weight k further. However, at this stage, the collected
data is not sufficient to make precise claims. We observe that, in general,
almost all slopes are negative, thus providing evidence for the conjectureral
statement that all L-invariants are non-zero in Remark 3.7. It would also
be interesting to separate the slopes with respect to mod p eigensystems.
This is however not possible with our method. As this is only relevant for
larger p and N , this question becomes more interesting once more data in
these cases is available.

6.4. Tables. We keep the notation of subsection 6.3. Note that in the case
N > 1 our tables can include oldforms. Their slopes are indicated by blue
font.

Table 6.1. p = 2, N = 1

k d ν+
L (k, 2, 1) ν−L (k, 2, 1)

8 1 0
10 1 -1
12 0
14 2 -4 -4
16 1 -1
18 1 -2
20 2 -4 -4
22 2 -6 -6
24 1 -2
26 3 -7 -2, -7
28 2 -6 -6
30 2 -5 -5
32 3 -2, -7 -7
34 3 -7 -3, -7
36 2 -5 -5
38 4 -6, -10 -6, -10

k d ν+
L (k, 2, 1) ν−L (k, 2, 1)

40 3 -3, -7 -7
42 3 -9 -3, -9
44 4 -6, -10 -6, -10
46 4 -4, -11 -4, -11
48 3 -3, -9 -9
50 5 -9, -12 -3, -9, -12
52 4 -4, -11 -4, -11
54 4 -7, -10 -7, -10
56 5 -3, -9, -12 -9, -12
58 5 -8, -12 -3, -8, -12
60 4 -7, -10 -7, -10
62 6 -6, -12, -12 -6, -12, -12
64 5 -3, -8, -12 -8, -12
66 5 -8, -12 -4, -8, -12
68 6 -6, -12, -12 -6, -12, -12
70 6 -7, -10, -16 -7, -10, -16
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Table 6.2. p = 3, N = 1

k d ν+
L (k, 3, 1) ν−L (k, 3, 1)

6 1 1
8 1 -1
10 2 -2 -2
12 1 -1
14 3 -4 0, -4
16 2 -3 -3
18 3 -4 0, -4
20 3 -2, -4 -4
22 4 -3, -6 -3, -6
24 3 -2, -4 -4
26 5 -5, -7 -2, -5, -7
28 4 -1, -6 -2, -6
30 5 -5, -7 -2, -5, -7
32 5 -2, -4, -9 -4, -9
34 6 -3, -6, -10 -3, -6, -10
36 5 -2, -4, -9 -4, -9
38 7 -4, -9, -11 -1, -4, -9, -11
40 6 -3, -7, -10 -3, -7, -10
42 7 -4, -9, -11 -1, -4, -9, -11
44 7 0, -6, -8, -11 -6, -8, -11
46 8 -2, -7, -11, -11 -2, -7, -11, -11
48 7 0, -6, -8, -11 -6, -8, -11
50 9 -5, -9, -11, -13 -1, -5, -9, -11, -13

Table 6.3. p = 5, N = 1

k d ν+
L (k, 5, 1) ν−L (k, 5, 1)

4 1 0
6 1 0
8 3 0, -2 -2
10 3 -2 2, -2
12 3 -1, -2 -2
14 5 -2, -4 -1, -2, -4
16 5 -1, -3, -4 -3, -4
18 5 -2, -4 -1, -2, - 4
20 7 -1, -2, -5, -6 -2, -5, -6
22 7 -2, -5, -6 -1, -2, -5, -6
24 7 -1, -2, -4, -7 -2, -4, -7
26 9 -3, -4, -7, -8 -1, -3, -4, -7, -8
28 9 -1, -2, -4, -7, -10 -2, -4, -7, -10
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Table 6.4. p = 7, N = 1

k d ν+
L (k, 7, 1) ν−L (k, 7, 1)

4 1 0
6 3 -1 0, -1
8 3 0, -1 -1
10 5 -1, -3 0, -1, -3
12 5 0, -2, -3 -2, -3
14 7 -2, -3, -4 2, -2, -3, -4
16 7 -1, -2, -3, -4 -2, -3, -4
18 9 -2, -3, -5, -6 -1, -2, -3, -5, -6
20 9 0, -1, -3, -5, -6 -1, -3, -5, -6
22 11 -1, -4, -5, -6, -7 -1, -1, -4, -5, -6, -7

Table 6.5. p = 13, N = 1

k d ν+
L (k, 13, 1) ν−L (k, 13, 1)

4 3 0, 0 0
6 5 0, -1 0, 0, -1
8 7 0, 0, -1, -2 0, -1, -2
10 9 0, -1, -2, -3 0, 0, -1, -2, -3
12 11 0, 0, -1, -2, -3, -4 0, -1, -2, -3, -4
14 13 0, -1, -2, -3, -4, -5 0, 0, -1, -2, -3, -4, -5

Table 6.6. p = 2, N = 3

k d ν+
L (k, 2, 3) ν−L (k, 2, 3)

4 1 1
6 1 0
8 3 0, 0 -1
10 3 0 -1, -1
12 3 -1, -4 -4
14 5 -4, -4 -1, -4, -4
16 5 -1, -1, -4 -2, -4
18 5 -1, -4 -2, -2, -4
20 7 -2, -4, -4, -6 -4, -4, -6
22 7 -4, -6, -6 -2, -4, -6, -6
24 7 -2, -2, -6, -7 -2, -6, -7
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Table 6.7. p = 3, N = 2

k d ν+
L (k, 3, 2) ν−L (k, 3, 2)

4 1 0
6 3 -1 1, 1
8 3 -1, -1 0
10 5 -2, -2 -1, -2, -2
12 5 -1,-1, -4 0, -4
14 7 -1, -4, -4 0, 0, -4, -4
16 7 1, -3, -3, -4 -3, -3, -4
18 9 -2, -4, -4, -4 0, 0, -4, -4, -4
20 9 -2, -2, -4, -4, -4 0, -4, -4, -4
22 11 -3, -3, -4, -6, -6 -2, -3, -3, -4, -6, -6
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