Mark VAN HOEIJ et Vivek PAL

Isomorphisms of algebraic number fields

<http://jtnb.cedram.org/item?id=JTNB_2012__24_2_293_0>
Isomorphisms of algebraic number fields

par Mark Van Hoeij et Vivek Pal

Résumé. Soient \(\mathbb{Q}(\alpha) \) et \(\mathbb{Q}(\beta) \) des corps de nombres. Nous décrivons une nouvelle méthode permettant de déterminer (s’il en existe) tous les isomorphismes \(\mathbb{Q}(\beta) \rightarrow \mathbb{Q}(\alpha) \). L’algorithme est particulièrement efficace lorsqu’il existe un unique isomorphisme.

Abstract. Let \(\mathbb{Q}(\alpha) \) and \(\mathbb{Q}(\beta) \) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, \(\mathbb{Q}(\beta) \rightarrow \mathbb{Q}(\alpha) \). The algorithm is particularly efficient if there is only one isomorphism.

1. Introduction

Let \(\mathbb{Q}(\alpha) \) and \(\mathbb{Q}(\beta) \) be two number fields, given by the minimal polynomials \(f(x) = \sum_{i=0}^{n} f_{i}x^{i} \) and \(g(x) = \sum_{i=0}^{n} g_{i}x^{i} \) of \(\alpha \) and \(\beta \) respectively. In this paper we give an algorithm to compute the isomorphisms \(\mathbb{Q}(\beta) \rightarrow \mathbb{Q}(\alpha) \). Suppose there is an isomorphism, then we have the following diagram of field extensions:

\[
\mathbb{Q}(\beta) \xrightarrow{\cong} \mathbb{Q}(\alpha) \\
| \quad g(x) \quad | \\
\mathbb{Q} \quad \mathbb{Q} \quad f(x)
\]

To represent such an isomorphism we need to give the image of \(\beta \) in \(\mathbb{Q}(\alpha) \), in other words, we need to give a root of \(g(x) \) in \(\mathbb{Q}(\alpha) \).

We now describe two common methods of computing isomorphisms of number fields.

- **Method I.** Field Isomorphism Using Polynomial Factorization [11, Algorithm 4.5.6]
 - Find all roots of \(g \) in \(\mathbb{Q}(\alpha) \). Each corresponds to an isomorphism \(\mathbb{Q}(\beta) \rightarrow \mathbb{Q}(\alpha) \). The roots can be found by factoring \(g \) over \(\mathbb{Q}(\alpha) \).
 - (1) If done with Trager’s method, one ends up factoring a polynomial in \(\mathbb{Q}[x] \) of degree \(n^2 \).
(2) An alternative is Belabas’ algorithm [6] for factoring in \(\mathbb{Q}(\alpha) \).

- **Method II.** Field Isomorphism Using Linear Algebra [11, Algorithm 4.5.1/4.5.5]
 1. Let \(\alpha_1, \ldots, \alpha_d \) be the roots of \(f \) in \(\mathbb{Q}_p \) (choose \(p \) with \(d > 0 \)).
 2. Let \(\beta_1, \ldots, \beta_d \) be the roots of \(g \) in \(\mathbb{Q}_p \).
 3. If \(\beta \mapsto h(\alpha) \) is an isomorphism, then \(h(\alpha_1) = \beta_i \) for some \(i \in \{1, \ldots, d\} \).
 4. For each \(i = 1, \ldots, d \), use LLL[9] techniques to check if there exists a polynomial \(h(x) \in \mathbb{Q}[x]_{<n} \) for which \(h(\alpha_1) = \beta_i \).

Our algorithm is similar to Method II. When \(\mathbb{Q}(\beta)/\mathbb{Q} \) is Galois our algorithm is the same as Algorithm II. However, if there is only one isomorphism then we can save roughly a factor \(d \). This is because we can do the LLL computation for all \(\beta_i \) simultaneously.

Main result 1.1. Given two irreducible polynomials \(f(x) \) and \(g(x) \) in \(\mathbb{Z}[x] \), we present an algorithm to find all isomorphisms between the fields \(\mathbb{Q}(x)/(f(x)) \) and \(\mathbb{Q}(x)/(g(x)) \).

A Maple implementation shows that our algorithm can handle large inputs while using only a modest amount of memory. We expect the performance of Method I(b), restricted to finding linear factors, to be similar to Method II. To properly compare the running times, it would be necessary to reimplement our algorithm to Pari/GP since it has a faster LLL implementation than Maple.

The performance of our algorithm is in the same ballpark as Method II (we expect a speedup of a factor between 1 and \(d \)). We do not improve the worst-case complexity, because in the worst case, when \(\mathbb{Q}(\beta)/\mathbb{Q} \) is Galois, we end up following Method II). Nevertheless, the algorithm is interesting because it contains a novel technique that may be useful in other applications as well: we introduce sub-traces, and use them to design a method that makes it easy to combine the data obtained from several primes, which is something one can not do in Methods I and II.

2. Notations

Definition 1. Let \(\mathbb{Q}[x]_{<n} \) denote the polynomials over \(\mathbb{Q} \) with degree less than \(n \). If \(h(\alpha) \in \mathbb{Q}(\alpha) \) then the notation \(h(x) \) is the element of \(\mathbb{Q}[x]_{<n} \) that corresponds to \(h(\alpha) \) under \(x \mapsto \alpha \).

Under an isomorphism \(\phi : \mathbb{Q}(\beta) \to \mathbb{Q}(\alpha) \), \(\beta \) will map to some \(h(\alpha) \in \mathbb{Q}(\alpha) \),

\[
\beta \mapsto h(\alpha) = \sum_{i=0}^{n-1} h_i \alpha^i.
\]
A polynomial \(h(x) \in \mathbb{Q}[x] \) represents an isomorphism if and only if \(h(\alpha) \) is a root of \(g \), i.e. \(g(h(\alpha)) = 0 \).

Without loss of generality we can assume that both \(f \) and \(g \) are in \(\mathbb{Z}[x] \). If \(\mathbb{Q}(\beta) \) is isomorphic to \(\mathbb{Q}(\alpha) \) then \(g(x) \) and \(f(x) \) have the same factorization pattern in \(\mathbb{Q}_p[x] \) for every prime \(p \).

Definition 2. A prime \(p \) is called a *good prime* if it does not divide the leading coefficient of \(f \) or \(g \) and does not divide the discriminant of either \(f \) or \(g \).

For a good prime \(p \) we can factor \(f \) in \(\mathbb{Q}_p[x] \) up to any desired \(p \)-adic precision by factoring in \(\mathbb{F}_p[x] \), followed by Hensel Lifting [11, p. 137]. Likewise we can distinct-degree factor \(f \) as:

\[
(2.2) \quad f = F_1 F_2 \ldots F_m \quad \text{in} \quad \mathbb{Q}_p[x]
\]

where \(F_d \) is the product of all irreducible factors of \(f \) in \(\mathbb{Q}_p[x] \) of degree \(d \) [11, Section 3.4.3].

Definition 3. Sub-traces. Let \(p \) be a prime and \(d \) a positive integer. Let \(h(x) \in \mathbb{Q}[x] \), \(h(\alpha) \in \mathbb{Q}(\alpha) \) and \(F_d \) as above. We define the sub-trace of \(f \) as the \(\mathbb{Q} \)-linear map,

\[
Tr^d_p(f, -) : \mathbb{Q}(\alpha) \to \mathbb{Q}_p \quad Tr^d_p(f, h(\alpha)) := \sum_{\gamma \in \mathbb{F}_p \atop F_d(\gamma) = 0} h(\gamma).
\]

We define \(Tr^d_p(g, -) : \mathbb{Q}(\beta) \to \mathbb{Q}_p \) similarly.

Remark 1. The map \(Tr^d_p \) does not depend on the choice of the minimal polynomial \(f \) that is used to represent the number field. In particular if \(\beta \mapsto h(\alpha) \) is an isomorphism \(\mathbb{Q}(\beta) \to \mathbb{Q}(\alpha) \) then

\[
Tr^d_p(g, \beta) = Tr^d_p(f, h(\alpha)) \quad \text{for every} \quad p \quad \text{and} \quad d.
\]

Definition 4. We define two bases of \(\mathbb{Q}(\alpha) \) over \(\mathbb{Q} \). The standard basis, \(\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\} \) and the rational representation basis, \(\{1/f'(\alpha), \alpha/f'(\alpha), \ldots, \alpha^{n-1}/f'(\alpha)\} \).

The rational representation basis can improve running time and complexity results, see [4]. This basis has also been used under various names, see [4], and occurs naturally in algebraic number theory as a dual basis under the trace operator, see [2].

Definition 5. A basis for \(\mathbb{Q}(\alpha) \) corresponds to a map \(\mathbb{Q}^n \to \mathbb{Q}(\alpha) \). For the rational representation basis, we define this map as \(\rho \),

\[
\rho : (a_0, a_1, \ldots, a_{n-1}) \mapsto \frac{1}{f'(\alpha)} \sum_{i=0}^{n-1} a_i \alpha^i.
\]
Definition 6. We define the inverse linear map $\rho^{-1} : \mathbb{Q}(\alpha) \rightarrow \mathbb{Q}^n$, $h(\alpha) \mapsto \tilde{h}$ as follows. Let $h(\alpha) = \sum_{i=0}^{n-1} a_i \alpha^i \in \mathbb{Q}(\alpha)$ and write $f'(\alpha) \cdot h(\alpha)$ as $\sum_{i=0}^{n-1} b_i \alpha^i$. Then define $\tilde{h} := (b_0, b_1, \ldots, b_{n-1}) \in \mathbb{Q}^n$.

Remark 2. One of the main advantages of using rational representation is that by using the b_i in \tilde{h} instead of the a_i, we have $\tilde{h} \in \mathbb{Z}^n$ for every algebraic integer $h(\alpha)$, see Lemma 4.1. Moreover, as in [4] this also improves bounds in Section 4. It is also better to use $g_n \tilde{h}$ than simply using $h(\alpha)$ since $g_n \tilde{h}$ will have integer components, by Corollary 4.1, which are easier to bound and are heuristically of smaller size [4, Section 6].

Definition 7. For a polynomial $f(x) = \sum_{i=0}^{n} f_i x^i$ denote

$$||f(x)|| := \left(\sum_{i=0}^{n} |f_i|^2 \right)^{1/2}.$$

Definition 8. Let $M(f)$ be the Mahler measure of f,

$$M(f) := f_n \cdot \prod_{f(\gamma)=0} \max \{1, |\gamma|\}.$$

3. Overview of the algorithm

Goal: To find all $g_n \tilde{h} \in \mathbb{Z}^n$ for which $\beta \mapsto h(\alpha)$ defines an isomorphism $\mathbb{Q}(\beta) \rightarrow \mathbb{Q}(\alpha)$.

Idea: The aim of the Pre-processing algorithm in Section 5 is to find a sequence

$$\mathbb{Z}^n = L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_k$$

such that all $g_n \tilde{h}$ are in each L_i. We can then use L_k to speed up the computation of the isomorphism(s), especially when $\dim(L_k)$ is small. The cost of computing L_k is comparable to one iteration in Method II.

In the algorithm we start with the lattice \mathbb{Z}^n and then add the restrictions imposed by the condition that under an isomorphism, sub-traces $\mathbb{Q}(\alpha) \rightarrow \mathbb{Q}_p$ must correspond to sub-traces $\mathbb{Q}(\beta) \rightarrow \mathbb{Q}_p$. By doing this for several primes we are able to narrow down the possible isomorphisms. If $\dim(L_k) \leq 1$, this directly gives the isomorphism or shows that there is no isomorphism. If $\dim(L_k) > 1$ then we switch to Method II, but starting with L_k. Thus we end up with d lattice reductions of dimension $\dim(L_k)$. In the worst case $\dim(L_k) \approx n$, this costs the same as Method II. In the best case, $\dim(L_k) \leq 1$ and we save a factor d.

4. Bounding the length of $g_n \tilde{h}$

Lemma 4.1. If $a \in \mathbb{Q}(\alpha)$ is an algebraic integer and $f(x)$ is the minimal polynomial for α, then $f'(\alpha) \cdot a \in \mathbb{Z}[\alpha]$.
Proof. Denote by \((i)\) the complex embeddings of \(\mathbb{Q}(\alpha)\). Then define
\[
m(x) := \sum_{i=1}^{n} a^{(i)} \frac{f(x)}{x - \alpha^{(i)}}.
\]
The coefficients of \(m(x)\) are in \(\mathbb{Q}\) since the polynomial is symmetric in the \(\alpha^{(i)}\). But \(m(x)\) is also a sum of polynomials all of whose entries are algebraic integers. Hence \(m(x) \in \mathbb{Z}[x]\). Note that for \(\alpha = \alpha^{(1)}\) we get \(m(\alpha) = a f'(\alpha) \in \mathbb{Z}[\alpha]\). \(\square\)

Corollary 4.1. Let \(\beta \mapsto h(\alpha)\) be an isomorphism of \(\mathbb{Q}(\beta) \to \mathbb{Q}(\alpha)\). Then \(g_n h(\alpha)\) is an algebraic integer and hence \(g_n \tilde{h} \in \mathbb{Z}^n\).

Proof. Apply Lemma 4.1 with \(a = g_n h(\alpha)\) and recall that \(g_n \tilde{h}\) is comprised of the coefficients of \(g_n f'(\alpha) h(\alpha)\) in the standard basis, each of which will be integers by Lemma 4.1. \(\square\)

Lemma 4.2. Let \(P(x) = \sum_{i=1}^{n} \beta_i \frac{f(x)}{x - \alpha_i} \in \mathbb{Q}[x]_{<n}\), then \(P(\alpha) = f'(\alpha) h(\alpha)\).

Proof. If we evaluate \(f'(x) h(x)\) at the roots of \(f(x)\) and then interpolate we get:
\[
\sum_{i=1}^{n} \beta_i f'(\alpha_i) \frac{f(x)}{x - \alpha_i} = \sum_{i=1}^{n} \beta_i \frac{f(x)}{x - \alpha_i}.
\]
Therefore \(\sum_{i=1}^{n} \beta_i \frac{f(x)}{x - \alpha_i}\) will be the remainder of \(f'(x) h(x)\) divided by \(f(x)\), because they are of the same degree and coincide on the \(n\) roots of \(f(x)\). The lemma then follows from the fact that \(\alpha\) is a root of \(f(x)\). \(\square\)

We now bound \(\|\frac{f(x)}{x - \alpha_i}\|\).

Theorem 4.1. If \(f(x)\) and \(\tilde{f}(x)\) are polynomials with complex coefficients, of degree \(n\) and \(d\) respectively, such that \(\tilde{f}(x)\) divides \(f(x)\) and \(|f(0)| = |\tilde{f}(0)| \neq 0\), then
\[
(4.1) \quad \|\tilde{f}(x)\| \leq \left(\sum_{j=0}^{n-d} \binom{d}{j}^2\right)^{1/2} \|f(x)\|.
\]

Proof. See Granville, [1]. \(\square\)

Corollary 4.2. If \(f(x)\) and \(\tilde{f}(x)\) have the same leading coefficient and \(f(0), \tilde{f}(0) \neq 0\) and \(\tilde{f}(x)\) divides \(f(x)\) then equation (4.1) holds.

Proof. Apply Theorem 4.1 to the reciprocals of \(f\) and \(\tilde{f}\). \(\square\)

Corollary 4.3. Let \(P(x)\) be an irreducible polynomial (over \(\mathbb{Q}\)) of degree \(n \geq 1\) and let \(\{\gamma_1, \gamma_2, \ldots, \gamma_n\}\) be its complex roots. Then
\[
\|\frac{P(x)}{x - \gamma_i}\| \leq n \|P(x)\|
\]
Proof. Take $\tilde{f}(x) = \frac{P(x)}{x-\gamma_i}$ and $f(x) = P(x)$ and apply Corollary 4.2. Then
\[
\frac{\|P(x)\|}{x-\gamma_i} \leq (n^2 - 2n + 2)^{1/2}\|P(x)\| \leq n\|P(x)\|.
\]

\[\square\]

Theorem 4.2. Let
\[
S_g(x) := \sum_{g(\beta) = 0, \beta \in \mathbb{C}} |\beta_i|
\]
then:
\[
(4.2) \quad g_n\|\vec{h}\| \leq g_n n S_g(x)\|f(x)\|.
\]

Remark 3. There are several ways to bound $S_g(x)$:
1) $S_g(x) \leq$ The degree of $g(x)$ times the rootbound described in [3].
2) $S_g(x) \leq M(g)/lc(g) + (n-1)$, where the Mahler measure can be bounded by $\|g(x)\|$.

Proof. (of Theorem 4.2)
\[
\|\vec{h}\| = \|P\| = \| \sum_{i=1}^{n} \beta_i \frac{f(x)}{x-a_i} \| \leq n\|f(x)\| \sum_{i=1}^{n} |\beta_i| = n\|f(x)\| S_g(x).
\]
The first equality is by the definition of \vec{h}, the second by Lemma 4.2 and the inequality by Corollary 4.3.

\[\square\]

5. The algorithms

The Pre-processing algorithm reduces the lattice of possible isomorphisms and gives the explicit isomorphism if there is only one. The next algorithm, FindIsomorphism, calls the Pre-processing algorithm and uses the remaining lattice to check which maps on roots corresponds to an isomorphism.

Algorithm: LLL-with-removals[10]
Input A lattice $\Lambda = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_k$ where $a_i \in \mathbb{Z}^n$ given by a $n \times k$ matrix $[a_1 \ldots a_k]$ and a bound $b > 0$.
Output An LLL reduced basis of row vectors spanning a sublattice $\Lambda' \subset \Lambda$ where Λ' contains all vectors of Λ of length less than b.

Algorithm: FindSuitablePrime
Input $(f(x), g(x), b_p, a)$. Two polynomials $f(x), g(x) \in \mathbb{Z}[x]$, a lower bound b_p and an integer a.
Output The distinct degree factorization of $f \mod p^a$, where $p > b_p$, given by: $p, p^a, m, [[F_{d_1}, G_{d_1}], [F_{d_2}, G_{d_2}], \ldots [F_{d_m}, G_{d_m}]]$ Or “There is no isomorphism'
Procedure

(1) $p := bp$, counter := 0.

(2) Repeat (until the algorithm stops in Steps 2(d)ii, 2(f) or 2(i)).
 (a) $p := \text{nextprime}(p)$
 (b) if $p | \text{discriminant}(f, x)$ or $p|f_n$ then go to Step 2(a)
 (c) if $p | \text{discriminant}(g, x)$ or $p|g_n$ then go to Step 2(a)
 (d) Distinct Degree Factor f as $f \equiv F_{d_1}F_{d_2} \ldots F_{d_m} \mod p$.
 (i) If $m = 1$ then counter := counter + 1.
 (ii) If counter > 25 then print “Appears to be Galois” and return 0,0,0,0.
 (iii) Return to Step 2(a).
 (e) Distinct Degree Factor g as $g \equiv G_{d_1}G_{d_2} \ldots G_{d_{m'}} \mod p$.
 (f) If $m \neq m'$ or if the degrees of F_i and G_i do not match then return “There is no isomorphism”.
 (g) Hensel lift $f \equiv F_{d_1}F_{d_2} \ldots F_{d_m} \mod p^a$ and likewise for g.
 (h) If $\deg(F_1) > 0$ (if f has root(s) in \mathbb{Q}_p) then store p for later use.
 (i) Return $p, p^a, m, [F_{d_1}, G_{d_1}], \ldots, [F_{d_m}, G_{d_m}]$ as output and stop.

Algorithm: Pre-Processing
Input Two polynomials $f(x), g(x) \in \mathbb{Z}[x]$.
Output Either “No isomorphism exists”, a verified isomorphism, or a \mathbb{Z}-module which contains $(g_n h, g_n)$ for every isomorphism h, given as the row space of a matrix C.

Procedure

(1) Initialize
 (a) $e := n + 1$.
 (b) $C := (n + 1) \times (n + 1)$ identity matrix.
 (c) $p := 3$.
 (d) $q := 0$.
 (e) Let $\text{Base}_i \in \mathbb{Q}(\alpha)_{<n}$ ($i = 1 \ldots n$) be $\rho(1, \ldots, 0), \ldots, \rho(0, \ldots, 1)$ where ρ was defined in Definition 5.
(2) Let S be the minimum of the bounds in Remark 3.
(3) Let $b := g_n n S \| f(x) \|$.
(4) Repeat (until the algorithm stops in 4(b), 4(e) or 4(i)).
 (a) $q := q + 1$.
 (b) $p, p^a, m, M_q := \text{FindSuitablePrime}(f, g, x, p, \left\lceil b^{e/10} 2^{e/4} \right\rceil)$.
 (i) If $p = 0$ then return C.
 (c) Compute $\text{Tr}_{p}^d(f, \text{Base}_i)$ for $i = 1 \ldots n$ and $\text{Tr}_{p}^d(g, \beta)$ for each d with $\deg(F_d) > 0$. The necessary F_d, G_d are read from M_q.

Isomorphisms of algebraic number fields
(d) \(A := \begin{bmatrix} C & CT \\ 0 & P \end{bmatrix} \), where

\[
P := \begin{bmatrix} p^a \\ \vdots \\ p^a \end{bmatrix},
\]

\[
T := \begin{bmatrix} Tr_{p_1}^{d_1}(f, \text{Base}_1) & \ldots & Tr_{p_1}^{d_m}(f, \text{Base}_1) \\ Tr_{p_1}^{d_1}(f, \text{Base}_2) & \ldots & Tr_{p_1}^{d_m}(f, \text{Base}_2) \\ \vdots & \ldots & \vdots \\ Tr_{p_1}^{d_1}(f, \text{Base}_n) & \ldots & Tr_{p_1}^{d_m}(f, \text{Base}_n) \\ Tr_{p_1}^{d_1}(g, \beta) & \ldots & Tr_{p_1}^{d_m}(g, \beta) \end{bmatrix}
\]

the \(d_1, \ldots, d_m \) are as in Step 4(c). (Omitted entries are zero.)

(e) If \(CT \equiv 0 \mod p^a \) then

(i) \(\text{counter} := \text{counter} + 1 \).

(ii) If \(\text{counter} < 10 \) then Go to Step 4(a) else return \(C \) and stop.

(f) \(L := \text{LLL-with-removals}(A, b) \).

(g) Let \(C \) be the matrix with the first \(n + 1 \) columns of \(L \) and \(B \) the remaining \(m \) columns of \(L \), so \(L = \begin{bmatrix} C & B \end{bmatrix} \).

(h) if \(B \neq 0 \) then

(i) \(B := 10^{20} \cdot B \)

(ii) \(A := \begin{bmatrix} C & B \end{bmatrix} \)

(iii) \(L := \text{LLL-with-removals}(A, b) \), then go to Step 4(g).

(i) Let \(e := \text{number of rows of } C \).

(i) if \(e = 0 \) then output “There is no isomorphism.”

(ii) if \(e = 1 \) then let \(C = [v, v_{n+1}] \) with \(v \in \mathbb{Z}^n \), and let \(h \) be the polynomial corresponding to \(v/v_{n+1} \).

(A) Let \(\text{iso} := \frac{h(\alpha)g_n}{f'(\alpha)} \).

(B) If \(g(\text{iso}) = 0 \) then output “\(\text{iso} \) is the only isomorphism.”

(C) If not then output “There is no isomorphism.”

(iii) Else, go to Step 4a.

Algorithm: \text{FindIsomorphism}

Input Two polynomials, \(f, g \in \mathbb{Z}[x] \) which are irreducible and of the same degree.

Output The set of all isomorphisms from \(\mathbb{Q}[x]/(f) \) to \(\mathbb{Q}[x]/(g) \).

Procedure

(1) \(C := \text{Pre-Processing}(f(x), g(x), x) \).

(2) If Step 2(h) in algorithm \text{FindSuitablePrime} (called from algorithm \text{Pre-Processing}) stored at least one prime, then choose one with
smallest $\text{deg}(F_1)$. Otherwise keep calling algorithm \text{FindSuitablePrime} until such a prime is found.

(3) Let $\alpha_1, \ldots, \alpha_d$ be the roots of F_1 and Hensel lift them to $\mathbb{Z}/(p^a)$ with a as in algorithm \text{FindSuitablePrime}. Likewise let $\beta_1, \ldots, \beta_d \in \mathbb{Z}/(p^a)$ be the roots of G_1.

(4) For j from 1 to d do:

(a) Apply steps 4(d) through 4(i)ii of Pre-Processing using

$$T := \begin{bmatrix}
\text{Base}_1|_{\alpha = \alpha_j} \\
\text{Base}_2|_{\alpha = \alpha_j} \\
\vdots \\
\text{Base}_n|_{\alpha = \alpha_j} \\
\beta_1
\end{bmatrix}$$

(b) If $e > 1$ then

(i) Hensel Lift the roots of f and g to twice the current p-adic precision, i.e. p^{2a}.

(ii) Apply Step 4(a) with the more precise roots.

Remark 4. The \text{FindIsomorphism} algorithm is described for (linear) roots of f and g in \mathbb{Q}_p and can be extended to the roots of F_i and G_i.

Remark 5. It should be noted that even if the Pre-processing algorithm does not find the isomorphism(s), the LLL switches it performs will still contribute to the FindIsomorphism algorithm. This is true for the same reason as in [11, pg 175].

5.1. Proofs of termination and validity. First we cite a lemma which shows why we can use LLL with removal in our algorithm.

Lemma 5.1. Let $\{b_1, \ldots, b_k\}$ be a basis for a lattice, C, and $\{b_1^*, \ldots, b_k^*\}$ the corresponding Gram-Schmitt orthogonalized basis for C. If $\|b_k^*\| > B$ then a vector in C with norm less than B will be a \mathbb{Z}-linear combination of $\{b_1, \ldots, b_{k-1}\}$.

Proof. This follows from the proof of Proposition 1.11 in [9], it is also stated as Lemma 2 in [10].

Corollary 5.1. Using LLL-with-removals on a lattice containing $g_n\vec{h}$ with the bound b computed in Step 3 of Pre-Processing, does not remove $g_n\vec{h}$ from the lattice.

Proof. This follows from Lemma 5.1 and Theorem 4.2.

Lemma 5.2. The Pre-Processing algorithm terminates.

Proof. The only step for which this is not immediate is Step 4(h). Step 4(h) terminates because each run increases the determinant of the lattice (Step
4(h)i) and any final (see Lemma 5.1) vector with Gram-Schmitt length \(> b \) is removed, thus the number of vectors is monotonically decreasing and hence it can only be run a finite number of times. \(\square \)

Lemma 5.3. The FindIsomorphism algorithm terminates.

Proof. Suppose Step 4 never terminates (i.e. the lattice always has dimension \(> 1 \)) then it contains at least two vectors: \((h_1, e_1)\) and \((h_2, e_2)\). Let \(H = h_1 \) if \(e_1 = 0 \) or \(H = e_1 h_2 - e_2 h_1 \) otherwise. Then \(H(\alpha) \equiv 0 \mod p^a \). We get a contradiction when \(p^a \) is larger than an upper bound for \(\text{Res}_x(H, f) \). An upper bound for \(H \) can be obtained from equation 1.7 in [9] and the fact that the last vector after LLL-with-removals has Gram-Schmitt length \(\leq b \). \(\square \)

6. Heuristic estimate for the rank of \(C \)

Let \(C \subseteq \mathbb{Z}^{n+1} \) be the output of the Pre-Processing algorithm.

Observation 6.1. In most (but not all) examples, \(\text{dim}(C) \) is equal to \(n - n/d + 1 \).

This means that Pre-Processing is most effective when \(d = 1 \). Though as pointed out in Remark 5 the work done in Pre-Processing reduces the amount left to do.

Let \(G \) be the Galois group of \(f(x) \) and let \(H_i \) be the stabilizer of \(\alpha_i \) for \(i \in \{1, 2, \ldots, n\} \), where the \(\alpha_i \) are the roots of \(f(x) \).

Let \(d \) be the number of \(j \) such that \(H_1 = H_j \), then \(d \) is the number of automorphisms of \(\mathbb{Q}(\alpha) \). If \(\mathbb{Q}(\alpha) \) and \(\mathbb{Q}(\beta) \) are isomorphic then \(d \) will also be the number of isomorphisms from \(\mathbb{Q}(\beta) \) to \(\mathbb{Q}(\alpha) \).

Remark 6. We view \(G \), which as the Galois group acts on \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \), as acting on the set \(\{1, 2, \ldots, n\} \) in the most natural way. Hence we view \(G \) as a subgroup of \(S_n \), the symmetric group.

We will construct a partition matrix as follows. For each \(\sigma \in G \), group together the cycles of the same length. Different group elements and cycle lengths will correspond to different rows. For each element of \(G \) and for each cycle length in \(\sigma \), construct one row of \(P \) as follows: place a 1 in the \(i^{th} \) entry if \(\alpha_i \) is in a cycle of that length. We call the resulting matrix \(P \).

For example for \(\sigma_1 = (1)(2)(3)(456) \) and \(\sigma_2 = (12)(3456) \) we would get the following partition matrix:

\[
P = \begin{bmatrix}
\sigma_1 l = 1 & 1 & 1 & 0 & 0 & 0 \\
\sigma_1 l = 3 & 0 & 0 & 0 & 1 & 1 \\
\sigma_2 l = 2 & 1 & 1 & 0 & 0 & 0 \\
\sigma_2 l = 4 & 0 & 0 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\]
Since there are \(d\) automorphisms the number of distinct columns of \(P\) will be \(\leq n/d\), hence \(\text{rank}(P) \leq n/d\) and thus \(\text{Nullspace}(P) \geq n - n/d\).

This translates into an estimate on the rank of the lattice \(C\) since it helps us bound

\[V = \bigcap_{p,d} \text{Ker}(T_{p,d}(f,-)). \]

Nullspace\((P)\) corresponds to elements for which all sub-traces are zero, so \(\dim(\text{Nullspace}(P)) \leq \dim(V)\).

Since we used LLL-with-removals with cut off point \(b\), if \(V\) admits a basis whose norms are all smaller than \(b\) then \(V \subseteq \pi_{1...n}(C)\), where \(\pi_{1...n}\) is the projection on the first \(n\) coordinates.

Therefore under that assumption

\[\dim(\pi_{1...n}(C)) \geq \dim(\text{Nullspace}(P)) \geq n - n/d. \]

This leads to our estimate:

\(6.1\) \[\dim(C) \approx n - n/d + 1. \]

For most polynomials taken from the database [5] our estimate is an equality. Peter Muller provided an infinite sequence of counter-examples for the case we were most interested in (\(d = 1\)). For the first group in this sequence, the database [5] provides the following example:

\[f := x^{14} + 2x^{13} - 5x^{12} - 184x^{11} - 314x^{10} + 474x^9 + 1760x^8 + 1504x^7 - 400x^6 - 1478x^5 - 818x^4 + 73x^3 + 260x^2 + 121x + 23, \]

which has one automorphism but the Pre-processing algorithm outputs a dimension 2 lattice.

7. Computational efficiency

We compare our algorithm implemented in Maple with other methods of finding isomorphisms. The best algorithm we know for factoring over number fields is given by Belabas in [6], which is implemented in Pari/Gp.

We tested them on the field extensions given by the following two degree 25 polynomials:

\[f_1 := 21740261540625000000 x^{25} - 129272737978125000000 x^{24} + 44254465332187500000 x^{23} - 102418940816625000000 x^{22} + 1805378421647662500000 x^{21} - 249634002590534050000 x^{20} + 292282923492035000000 x^{19} - 384197583430502150000 x^{18} + 815826517614521346000 x^{17} - 2131245874043847615600 x^{16} + 4352260622811059705104 x^{15} - 6463590834754261173232 x^{14} + 692077688262436002712 x^{13} - 4525061881234027826296 x^{12} + 52840869827688662696 x^{11} + 2762117617850418790424 x^{10} - 4343360968383689825174 x^9 + 4191186502263628451150 x^8 - 2802452375464033976482 x^7 + 1332292171242725153638 x^6 - 161285249796825311495 x^5 - 429207332210687460181 x^4 + 264147194777000152867 x^3 + 6032198632961699729 x^2 - 42885793067850808650 x + 13774402803823804220 \]
and

\[f_2 := -13774402803823804220 - 4288579367858008650 x - 6032198632961699729 x^2 \\
+ 26414719477700152867 x^3 + 42920733210687640181 x^4 - 161285249796825311495 x^5 \\
- 133229217124275153638 x^6 - 42885793067858008650 x^7 - 419118650226362851150 x^8 \\
- 434336096838368925174 x^9 - 2762117617850418790424 x^{10} + 52840869827666662696 x^{11} \\
+ 452506188123402782629 x^{12} + 692077688226436002712 x^{13} + 6463590834754261173232 x^{14} \\
+ 4352260622811059705104 x^{15} + 815826517614521346000 x^{17} + 384197583430502150000 x^{18} \\
+ 29228292349420350000 x^{19} + 249634002590534050000 x^{20} + 180537842164766250000 x^{21} \\
+ 102418940816662500000 x^{22} + 4425446532187500000 x^{23} + 2131245874043847615600 x^{16} \\
+ 1292723797812500000 x^{24} + 2174026154062500000 x^{25}.
\]

These are field extensions with one isomorphism between them. Using Belabas’ method we have a runtime of 11.69 seconds, which includes the operation of defining the number field, and with our algorithm we have a runtime of 2.97 seconds.

We also tested them on a larger example, namely the degree 81 example located at [7], our algorithm found the isomorphism in 2226.051 seconds. When we tested this in Pari/Gp the command to define the number field did not finish as it ran out of memory after trying for a few days. Though the referee pointed out that using the command \texttt{nfroots}(f, g) in Pari/Gp version 2.5.0 finishes in 1923.160 seconds (although it uses significantly more memory). To properly compare the running times, it would be necessary to reimplement our algorithm since the LLL implementation in Pari/GP is many times faster than that in Maple.

8. Summary

Method II (from Section 1) can be described by the following procedure:

- first pick \(p \) such that \(f \) and \(g \) have roots in \(\mathbb{Q}_p \). Fix one root \(\beta \in \mathbb{Q}_p \) of \(g \), take all roots \(\alpha_1, \ldots, \alpha_d \in \mathbb{Q}_p \) of \(f \). Then for each \(\alpha_i \) use LLL to find \(h_i \in \mathbb{Q}[x] \) (if it exists) with \(h_i(\alpha_i) = \beta \).

Our approach is similar, with two differences: (1) we can combine data from several primes, and (2) we start with LLL reductions (obtained from sub-traces) that are valid for all \(\alpha_i \). This way, a portion of the LLL computation to be done for each \(\alpha_i \) is now shared. The time saved is then \((d - 1) \) times the cost of the shared portion. This can be made rigorous by introducing a progress counter for LLL cost similar to [10].

References

Isomorphisms of algebraic number fields

[5] Database by Jürgen Klüners and Gunter Malle, located at:
 http://www.math.uni-duesseldorf.de/~klueners/minimum/minimum.html

[7] Website with implementations and Degree 81 examples:
 http://www.math.fsu.edu/~vpal/Iso/

Mark van Hoeij
Florida State University
211 Love Building
Tallahassee, Fl 32306-3027, USA
E-mail: hoeij@math.fsu.edu
URL: http://www.math.fsu.edu/~hoeij

Vivek Pal
Columbia University
Room 509, MC 4406 2990 Broadway
New York, NY 10027, USA
E-mail: vpal@math.columbia.edu
URL: http://www.math.columbia.edu/~vpal