John E. CREMONA et Andrew V. SUTHERLAND

On a theorem of Mestre and Schoof

<http://jtnb.cedram.org/item?id=JTNB_2010__22_2_353_0>

© Université Bordeaux 1, 2010, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
On a theorem of Mestre and Schoof

par John E. Cremona et Andrew V. Sutherland

Résumé. Un théorème bien connu de Mestre et Schoof implique que la cardinalité d’une courbe elliptique E définie sur un corps premier \mathbb{F}_q peut être déterminée de manière univoque en calculant les ordres de quelques points sur E et sur sa tordue quadratique, à condition que $q > 229$. Nous étendons ce résultat à tous les corps finis avec $q > 49$, et tous les corps premiers avec $q > 29$.

Abstract. A well known theorem of Mestre and Schoof implies that the order of an elliptic curve E over a prime field \mathbb{F}_q can be uniquely determined by computing the orders of a few points on E and its quadratic twist, provided that $q > 229$. We extend this result to all finite fields with $q > 49$, and all prime fields with $q > 29$.

Let E be an elliptic curve defined over the finite field \mathbb{F}_q with q elements. The number of points on E/\mathbb{F}_q, which we simply denote $\#E$, is known to lie in the Hasse interval:

$$\mathcal{H}_q = [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}]$$

Equivalently, the trace of Frobenius $t = q + 1 - \#E$ satisfies $|t| \leq 2\sqrt{q}$. A common strategy to compute $\#E$, when q is not too large, relies on the fact that the points on E/\mathbb{F}_q form an abelian group $E(\mathbb{F}_q)$ of order $\#E$. For any $P \in E(\mathbb{F}_q)$, the integer $\#E$ is a multiple of the order of P, and the multiples of $|P|$ that lie in \mathcal{H}_q can be efficiently determined using a baby-steps giant-steps search. If there is only one multiple in the interval, it must be $\#E$; if not, we may try other $P \in E(\mathbb{F}_q)$ in the hope of uniquely determining $\#E$. This strategy will eventually succeed if and only if the group exponent

$$\lambda(E) = \text{lcm}\{|P| : P \in E(\mathbb{F}_q)\}$$

has a unique multiple in \mathcal{H}_q. When this condition holds we expect to determine $\#E$ quite quickly: with just two random points in $E(\mathbb{F}_q)$ we already succeed with probability greater than $6/\pi^2$ (see [2, Theorem 8.1]).

Unfortunately, $\lambda(E)$ need not have a unique multiple in \mathcal{H}_q. However, for prime q we have the following theorem of Mestre, as extended by

Manuscrit reçu le 10 mars 2009.
Schoof [1, Theorem 3.2]; the result as stated in [1] refers to the order of a particular point P, but the following is an equivalent statement.

Theorem 1 (Mestre-Schoof). Let $q > 229$ be prime and E an elliptic curve over \mathbb{F}_q with quadratic twist E'. Either $\lambda(E)$ or $\lambda(E')$ has a unique multiple in \mathcal{H}_q.

The quadratic twist E' is an elliptic curve defined over \mathbb{F}_q that is isomorphic to E over the quadratic extension \mathbb{F}_{q^2}, and is easily derived from E. The orders of the groups $E(\mathbb{F}_q)$ and $E'(\mathbb{F}_q)$ satisfy $\#E + \#E' = 2(q + 1)$. For prime fields with $q > 229$, Theorem 1 implies that we may determine one of $\#E$ and $\#E'$ by alternately computing the orders of points on E and E', and once we know either $\#E$ or $\#E'$, we know both.

Theorem 1 does not hold for $q = 229$. Since there are counterexamples whenever q is a square, it does not hold in general for non-prime finite fields either. The argument in the proof of [1, Theorem 3.2] does not use the primality of q, but only that q is both large enough and not a square, so that the Hasse bound on t cannot be attained. If $q = r^2$ is an even power of a prime, then there are supersingular elliptic curves E over \mathbb{F}_q such that

$$E(\mathbb{F}_q) \cong (\mathbb{Z}/(r - 1)\mathbb{Z})^2 \quad \text{and} \quad E'(\mathbb{F}_q) \cong (\mathbb{Z}/(r + 1)\mathbb{Z})^2.$$

One may easily check that there are at least 5 multiples of $r - 1$, and at least 3 multiples of $r + 1$, in \mathcal{H}_q; however for $r > 7$ ($q > 49$), the only pair that sum to $2(q + 1)$ are $(r - 1)^2$ and $(r + 1)^2$. This resolves the ambiguity in these cases, leaving a finite number of small exceptions. For example, when $q = 49$ there is more than one pair of multiples of 6 and 8 (respectively) which sum to $2(q + 1) = 100$, since $100 = 36 + 64 = 60 + 40$.

The preceding observation led to this note, whose purpose is to extend Theorem 1 to treat all finite fields (not just prime fields) \mathbb{F}_q with $q > 49$, and all prime fields with $q > 29$. Specifically, we prove the following:

Theorem 2. Let $q \notin \{3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49\}$ be a prime power, and let E/\mathbb{F}_q be an elliptic curve. Then there is a unique integer t with $|t| \leq 2\sqrt{q}$ such that $\lambda(E)|(q + 1 - t)$ and $\lambda(E')|(q + 1 + t)$.

Our proof is entirely elementary, relying on just two properties of elliptic curves over finite fields:

(a) $\#E = q + 1 - t$ and $\#E' = q + 1 + t$ for some integer t with $|t| \leq 2\sqrt{q}$;
(b) $E(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}$ with n_1 dividing both n_2 and $q - 1$.

Proofs of (a) and (b) may be found in most standard references, including [3]. We note that $n_2 = \lambda(E)$, and $n_1 = 1$ when $E(\mathbb{F}_q)$ is cyclic.

Proof of Theorem 2. Let E be an elliptic curve over \mathbb{F}_q, and put $\#E = mM$ with $M = \lambda(E)$, and $\#E' = nN$ with $N = \lambda(E')$. Without loss of generality, we assume $a = q + 1 - \#E \geq 0$. Taking $t = a$ shows existence,
by (a) and (b) above, so we need only prove that \(t = a \) is the unique \(t \) satisfying the conditions stated in the theorem. For any such \(t \) we have \(t \equiv q+1 \mod M \) and \(t \equiv -(q+1) \mod N \); hence \(t \) lies in an arithmetic sequence with difference \(\text{lcm}(M,N) \). We also have \(|t| \leq 2\sqrt{q} \); thus if \(\text{lcm}(M,N) > 4\sqrt{q} \), then \(t = a \) is certainly unique.

We now show that \(\text{lcm}(M,N) \leq 4\sqrt{q} \) implies \(q \leq 1024 \). We start from

\[
mMnN = (q+1-a)(q+1+a) = (q+1)^2 - a^2 \geq (q+1)^2 - 4q = (q-1)^2,
\]

which yields

\[
(0.1) \quad mn \geq \frac{(q-1)^2}{MN} = \frac{(q-1)^2}{\gcd(M,N)\text{lcm}(M,N)}.
\]

Let \(d = \gcd(m,n) \). Then \(d^2 \) divides \(mM+nN = 2(q+1) \), so \(d|(q+1) \), but also \(d|(q-1) \), hence \(d \leq 2 \). This implies \(2\text{lcm}(M,N) \geq 2\text{lcm}(m,n) \geq mn \).

We also have \(\gcd(M,N) \leq \gcd(m,n)\gcd(M/m,N/n) \leq 2\gcd(M/m,N/n) \).

Applying these inequalities to (0.1) we obtain

\[
(0.2) \quad \text{lcm}(M,N)^2 \geq \frac{(q-1)^2}{4\gcd(M/m,N/n)}.
\]

We now suppose \(\text{lcm}(M,N) \leq 4\sqrt{q} \), for otherwise the theorem holds. We have \(nN = q+1+a > q \), since we assumed \(a \geq 0 \), and \(N \leq 4\sqrt{q} \) implies that \(n > \sqrt{q}/4 \), so \(N/n < 16 \). Applying \(\gcd(M/m,N/n) \leq N/n < 16 \) to (0.2) yields

\[
4\sqrt{q} \geq \text{lcm}(M,N) > (q-1)/8,
\]

which implies that the prime power \(q \) is at most 1024.

The cases for \(q \leq 1024 \) are addressed by a program listed in the appendix that outputs the values of \(q \), \(M = \lambda(E) \), and \(N = \lambda(E') \) for which exceptions can arise. This yields the set of excluded \(q \) and completes the proof. \(\square \)

Application. The proof of Theorem 2 suggests an algorithm to compute \(\#E \), provided that \(q \) is small enough for the orders of randomly chosen points in \(E(\mathbb{F}_q) \) to be easily computed. It suffices to determine integers \(a \) and \(m \) for which the set \(S = \{x : x \equiv a \mod m\} \) contains \(t = q+1-\#E \) but no \(t' \neq t \) with \(|t'| \leq 2\sqrt{q} \). Beginning with \(m = 1 \) and \(a = 0 \), we compute \(|P| \) for random points \(P \) in \(E(\mathbb{F}_q) \) or \(E'(\mathbb{F}_q) \), and update \(a \) and \(m \) to reflect the fact that \(t \equiv q+1 \mod |P| \) when \(P \in E(\mathbb{F}_q) \), and \(t \equiv -(q+1) \mod |P| \) when \(P \in E'(\mathbb{F}_q) \). The new values of \(a \) and \(m \) may be determined via the extended Euclidean algorithm. When the set \(S \) contains a unique \(t \) with \(|t| \leq 2\sqrt{q} \), we can conclude that \(\#E = q+1-t \) (and also that \(\#E' = q+1+t \)).

The probabilistic algorithm we have described is a Las Vegas algorithm, that is, its output is always correct and its expected running time is finite. The correctness of the algorithm follows from property (a). Theorem 2
ensures that the algorithm can terminate (provided that \(q \) is not in the excluded set), and [2, Theorem 8.2] bounds its expected running time.

An examination of Table 1 reveals that in many cases an ambiguous \(t' \) could be ruled out if \(\lambda(E) \) or \(\lambda(E') \) were known. For example, when \(q = 49 \), the trace \(t' = -10 \) yields \(\#E = 60 \) and \(\#E' = 40 \), so both \(\lambda(E) \) and \(\lambda(E') \) are divisible by 5 (and are not 6 or 8). If \(E \) has trace \(-10\), the algorithm above will likely discover this and terminate within a few iterations. But when the trace of \(E \) is 14 (and \(\lambda(E) = 6 \) and \(\lambda(E') = 8 \)), we can never be completely certain that we have ruled out \(-10\) as a possibility. Thus when an unconditional result is required, we must avoid \(q \in \{3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49\} \).

However, when \(\lambda(E) \) and \(\lambda(E') \) are known we have the following corollary, which extends Proposition 4.19 of [3].

Corollary 1. Let \(E/\mathbb{F}_q \) be an elliptic curve. Up to isomorphism, the integers \(\lambda(E) \) and \(\lambda(E') \) uniquely determine the groups \(E(\mathbb{F}_q) \) and \(E'(\mathbb{F}_q) \), provided that \(q \notin \{5, 7, 9, 11, 17, 23, 29\} \). In every case, \(\lambda(E) \) and \(\lambda(E') \) uniquely determine the set \(\{E(\mathbb{F}_q), E'(\mathbb{F}_q)\} \).

Note that \(\lambda(E) \) and \(\#E \) together determine \(E(\mathbb{F}_q) \), by property (b). To prove the corollary, apply Theorem 1 with a modified version of the algorithm in the appendix that also requires \((q + 1 - t')/M \) to divide \(M \) and \((q + 1 + t')/N \) to divide \(N \).

As a final remark, we note that all the exceptional cases listed in Table 0.1 can be eliminated if the orders of the 2-torsion and 3-torsion subgroups of \(E(\mathbb{F}_q) \) are known (these orders may be computed using the division polynomials). Alternatively, one can simply enumerate the points on \(E/\mathbb{F}_q \) to determine \(\#E \) when \(q \leq 49 \).

Appendix

For a prime power \(q \), we wish to enumerate all \(M, N, \) and \(t \) such that:

(i) \(M \) divides \(q + 1 - t \) and \(N \) divides \(q + 1 + t \), with \(0 \leq t \leq 2\sqrt{q} \).

(ii) \((q + 1 - t)/M \) divides \(M \) and \(q - 1 \), and \((q + 1 + t)/N \) divides \(N \) and \(q - 1 \).

(iii) \(M \) divides \(q + 1 - t' \) and \(N \) divides \(q + 1 + t' \) for some \(t' \neq t \) with \(|t'| \leq 2\sqrt{q} \).

Any exception to Theorem 2 must arise from an elliptic curve \(E/\mathbb{F}_q \) with \(\lambda(E) = M, \lambda(E') = N \), and \(\#E = q + 1 - t \) (or from its twist, but the cases are symmetric, so we restrict to \(t \geq 0 \)). Properties (i) and (ii) follow from (a) and (b) above, and (iii) implies that \(t \) does not uniquely satisfy the requirements of the theorem.

Algorithm 1 below finds all \(M, N, \) and \(t \) satisfying (i), (ii), and (iii). For \(q \leq 1024 \), exceptional cases are found only for the twelve values of \(q \) listed...
in Theorem 2. Not every case output by Algorithm 1 is actually realized by an elliptic curve (in fact, all but one of the exceptions fail the condition that \((q + 1 - t)/M \equiv (q + 1 + t)/N \pmod{2}\)), but for each combination of \(q\) and \(t\) at least one is. An example of each such case is listed in Table 0.1, where we only list cases with \(t \geq 0\); for the symmetric cases with \(t < 0\), change the sign of \(t\) and swap \(M\) and \(N\).

Algorithm 1. Given a prime power \(q\), output all quadruples of integers \((M, N, t, t')\) satisfying (i), (ii), and (iii) above:

```plaintext
for all pairs of integers \((M, N)\) with \(\sqrt{q} - 1 \leq M, N \leq 4\sqrt{q}\) do
    for all integers \(t \in [0, 2\sqrt{q}]\) with \(M|(q + 1 - t)\) and \(N|(q + 1 + t)\) do
        Let \(m = (q + 1 - t)/M\) and \(n = (q + 1 + t)/N\).
        if \(m|\) and \(m|(q - 1)\) and \(n\) and \(n|(q - 1)\) then
            for all integers \(t' \in [-2\sqrt{q}, 2\sqrt{q}]\) do
                if \(M|(q + 1 - t')\) and \(N|(q + 1 + t')\) then
                    print \(M, N, t, t'\).
                end if
            end for
        end if
    end for
end for
```

<table>
<thead>
<tr>
<th>(q)</th>
<th>(M)</th>
<th>(N)</th>
<th>(t)</th>
<th>(E)</th>
<th>(t')</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>(y^2 = x^3 - x)</td>
<td>-2,2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>(y^2 + y = x^3 + \alpha^2)</td>
<td>-2,1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>(y^2 = x^3 + x)</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>(y^2 = x^3 - 1)</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>(y^2 = x^3 + 3x)</td>
<td>-4,4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>(y^2 = x^3 + \alpha^2 x)</td>
<td>-6,-2,2</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>(y^2 = x^3 + x + 9)</td>
<td>-4</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>(y^2 = x^3 + 2x)</td>
<td>-6,6</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>(y^2 + y = x^3)</td>
<td>-7</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>(y^2 = x^3 + x + 7)</td>
<td>-6</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>(y^2 = x^3 + 5x + 15)</td>
<td>-8</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>(y^2 + y = x^3 + \alpha^7)</td>
<td>-2</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>(y^2 = x^3 + x)</td>
<td>-10</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>(y^2 = x^3 + \alpha^2 x)</td>
<td>-10</td>
</tr>
</tbody>
</table>

Table 0.1. Exceptional Cases with \(t \geq 0\).

The coefficient \(\alpha\) denotes a primitive element of \(\mathbb{F}_q\).

References

John E. Cremona
Mathematics Institute
University of Warwick
Coventry CV4 7AL
UK
E-mail: J.E.Cremona@warwick.ac.uk
URL: http://www.warwick.ac.uk/staff/J.E.Cremona/

Andrew V. Sutherland
Massachusetts Institute of Technology
Department of Mathematics
77 Massachusetts Avenue
Cambridge, MA 02139-4307
USA
E-mail: drew@math.mit.edu
URL: http://math.mit.edu/~drew/