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Prime divisors of linear recurrences and Artin’s

primitive root conjecture for number fields

par HANS ROSKAM

RÉSUMÉ. Soit S une suite définie par une récurrence linéaire
entière d’ordre k &#x3E; 3. On note l’ensemble des nombres pre-
miers qui divisent au moins l’un des termes de S. Nous donnons
une approche heuristique du problème selon lequel PS admet ou
non une densité naturelle, et montrons que certains aspects de
ces heuristiques sont corrects. Sous l’hypothèse d’une certaine
généralisation de la conjecture d’Artin pour les racines primi-
tives, nous montrons que PS possède une densité asymptotique
inférieure pour toute suite S "générique". Nous donnons en illus-
tration des exemples numériques.

ABSTRACT. Let S be a linear integer recurrent sequence of order
k ~ 3, and define PS as the set of primes that divide at least
one term of S. We give a heuristic approach to the problem
whether PS has a natural density, and prove that part of our
heuristics is correct. Under the assumption of a generalization
of Artin’s primitive root conjecture, we find that PS has positive
lower density for ’generic’ sequences S. Some numerical examples
are included.

1. Introduction

An integer sequence ,S‘ _ Ix,,1001 is said to satisfy a linear recurrence of
order 1~, if there exist integers al, a2, ... , a~ such that

If such a sequence ,S’ does not satisfy a linear recurrence of order smaller
than 1~, we say that ~S’ is a linear recurrent sequence of order l~. In this
case the xn can be given as an exponential expression in the roots of the
characteristic polynomial f = X ~ - E Z[X] of the recurrence.

Manuscrit re~u le ler novembre 1999.
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For example, if f is separable with roots we have

where E are determined by the initial values

xn n=l
Associated to a linear integer recurrent sequence ,S’ is the set Ps of primes

dividing the sequence, where a prime p is said to divide the sequence if p
divides some term of the sequence. We say that ,S’ is degenerate if the as-
sociated characteristic polynomial is either inseparable or has two different
roots whose quotient is a root of unity. If ,S’ is degenerate, the set Ps is
possibly finite. The fact that Ps is infinite for non-degenerate linear re-
current sequences ,S’ of order 2 is often attributed to Ward [15]. However,
already in 1921 P61ya [10] proved that for all non-degenerate linear recur-
rent sequences ~S’ of order k &#x3E; 2, the set Ps is infinite. His proof shows that
a finite set Ps contradicts the growth rate of S.

P61ya’s method seems inadequate to determine the ’size’ of Ps. In par-
ticular, it does not allow us to decide whether Ps has a density inside
the set of all primes. Almost all results on the existence and value of 6(PS)
are for second order linear recurrent sequences ,S’. In this second order case,
the method of proof depends on two properties of the sequence: whether
the sequence is ’torsion’ [1, 4, 6, 9] or non-torsion [13], and whether the
characteristic polynomial is reducible over Q [1, 4, 9, 13] or irreducible [6].

Essentially nothing is known for sequences of order larger than 2. The
methods for second order sequences can be made to work in some very
special cases: there exist higher order linear recurrent sequences having a
set of maximal prime divisors of positive density [1]. Ward [16] introduced
the term maximal prime divisors of a k-th order linear recurrent sequence
for those primes that divide I~ - 1 consecutive terms of the sequence, but
do not divide all terms.

In this paper we focus on linear recurrent sequences ,S’ of order k &#x3E; 3
whose associated characteristic polynomial is separable. Unfortunately, we
are not able to prove that the set Ps of primes dividing such a sequence
has a density. However, for a large class of linear recurrent sequences we
can prove that Ps has positive lower density, if we assume a generalization
of Artin’s conjecture on primitive roots.
The paper is organized as follows. In section 2 we give a different char-

acterization of the set Ps . This characterization is used in section 3, to
give a heuristic approach to the problem whether the set Ps contains a set
of positive density. Section 3 also contains a theorem stating that part of
the heuristics is correct. This theorem, combined with a generalization of
Artin’s conjecture on primitive roots, implies that Ps has positive lower
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density for ’generic’ sequences S. After proving the theorem in section 4,
we give some numerical examples in section 5.

2. Reformulation of the problem

Let S = be an integer sequence satisfying the linear recurrence
of order &#x3E; 2 with separable characteristic polynomial

The sequence ,S’ is an element of V f, the set of all sequences of algebraic
numbers satisfying the linear recurrence with characteristic polynomial f.
By defining addition and scalar multiplication of sequences component-
wise, the set V f becomes a Q-vectorspace. As f is separable, the sequences

form a Q-basis for V f , and there exist cl , ... , Ck E Q
such that xn - Ciai for all positive integers n. The absolute Galois
group GQ of Q permutes the a2’s and acts trivially on the integers xn.
Using that the form a basis for V f, we find that
the set is GQ-invariant. Moreover, each a E GQ induces the same
permutation on the 
Now let a denote the residue class of X in the free Q-algebra A -

Ca ~X~~ / ( f ) of rank k. By the Chinese remainder theorem, the c2’s determine
a unique c E A such that c(ai) = c2 for i = 1, ... , k. Because of the last
remark of the previous paragraph, GQ acts trivially on c. We conclude that
there exists a unique c E (~ ~X ~ / ( f ) such that

Denote the set of primes that divide the sequence S by Ps. A prime p is
an element of Ps if and only if there exists an integer n such that

In order to interchange the trace-map and the reduction modulo pZ, we
choose an integer d ~ 0 such that cd E Z (X ~ / ( f ) and define R = Z[~].
The (maximal) primes of the ring R are of the form pR, with p a rational
prime not dividing d. In the following we disregard the finitely many primes
dividing d. This restriction has no effect on the existence or value of the
density of Ps.

The elements can are contained in C~ = R~X~/( f ), a free R-algebra of
rank k. As the trace is stable under base change and the Q-algebras A and
0 0p Q are isomorphic, we can write equation (2) as

To compute xn modulo a prime p of R, we tensor the trace-map Tr :
0 -+ R with R/pR over R and obtain the trace-map Tr : R/pR.
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We find that a prime p of R divides the sequence if and only if there exists
an integer n such that

where the bar means reduction modulo In other words, if H denotes
the kernel of the trace map Tr : Fp , we have the following criterion
for a prime p of R to divide the sequence:

This characterization hints to why the determination of PS is difficult. The
group H is an additive subgroup of the ring whereas, for almost
all primes, c(a) is a coset of the multiplicative subgroup (a) C (O/pO)* .
Such a mixture of an additive and multiplicative structure is notoriously
difficult to study.

3. Heuristic approach

In this section we let p range over the primes of R and predict the
’probability’ that p divides a fixed linear recurrent sequence S. If this

’probability’ is positive, we expect Ps to be a set of primes of positive
density inside the set of all primes. By the equivalence (4) of section 2, the
likelihood that p divides S will depend on the size of the subgroup (a) C
(O/pO)* . In the extreme case that a generates (O/pO)* , the intersection
c(a) nH is non-empty and p divides the sequence. To make the importance
of the size of (a) more explicit, we fix a prime p of R such that ca is a unit
modulo pO. As the trace-map is surjective, its kernel H has index

p. The probability for a randomly chosen x EO/pO to have non-zero trace
is 1-!. The elements in the coset e(1i) c are not randomly chosenp

elements of 0/ pO. However, if we let p range over the primes of R, it seems
plausible that the additive and multiplicative structure of the ring 
are ’independent’. Therefore, we assume that as p varies, the ’probability’
that an element in the coset e(1i) has non-zero trace is 1 - p. As a further
simplification, we assume the ’probability’ that all elements in e(1i) have
non-zero trace, to be equal to (1 - p)#~(a). Note that these assumptions
are wrong for k = 1. In this case, the trace-map is the identity, and none of
the elements in = F* has zero trace. With the above assumptions
and the equivalence (4), we conclude that the ’probability’ that a prime p
does not divide a fixed linear recurrent sequence is approximated by

In order to obtain a set of primes of positive density that do divide
the sequence, we need a set of positive density, consisting of primes p for
which this probability is ’small’, or, equivalently, for which the order of
1i E is ’large’.
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For an integer a ~ 0, the order of a E F* divides p - 1. In 1927, Emil
Artin conjectured that if a is not equal to -1 or a square, the set of primes
p for which the order of a E F* equals p - 1 has positive density. More
generally, we expect that for each h E Z&#x3E;i , the set Th of primes p for which
the order of a E F* is (p-1)/h, has a density b(Th). Note that 8(Th) is not
positive for all a and h E Z&#x3E;l; if a is a square, there are no odd primes p
for which a E F* has order p - 1. However, we do expect the equality

8(Th) = 1 to hold. In other words, we expect that for ’most’ primes
p, the order of a modulo p is ’almost’ maximal. These conjectures are
still open, but have been proved under the assumption of the generalized
Riemann hypothesis [5, 7, 14].

To adapt Artin’s conjecture to our situation, we first need an upper
bound for the order of a E The trivial upper bound for this
order is the exponent e(p) of (C~/pC~)*. The value of e(p) as function of
the prime p depends on the splitting type of the characteristic polynomial
f modulo p. More precisely, for primes p not dividing the discriminant
of f, we have e(p) = lcmd(pd - 1), with d ranging over the degrees of the
irreducible factors of f E Fp[X]. Now, let T be the set of primes with a fixed
splitting type. We say that a, or, equivalently, f , satisfies the generalized
Artin conjecture for primitive roots, if the following holds.

For each h E the set Th of primes p E T for which the order of d E
is e(p)/h, has a density 6(Th). Moreover, we have ~h 18(Th) _

8(T) .

Artin’s original conjecture excludes the integers ~1. In our general setting,
there are more a’s for which the above conjecture does not hold. However,
we expect the conjecture to hold for ’generic’ a. As it is not our prime
interest to classify the exceptional a’s, we do not specify what we mean by
‘generic’. Instead we give an example of a non-generic a. Assume f does not
factor over Q as a product of linear polynomials. By Chebotarev’s density
theorem, the set T of primes p for which f does not split completely into
linear factors modulo p, has a positive density. For p E T, the exponent
e(p) is at least p2 -1. Now assume in addition that ak is rational, for some
fixed k E The order of a E is at most k(P-1), so Th is finite
for all h E We find that ¿h=18(Th) = 0 is strictly less than 6(T),
and the above conjecture does not hold.
Now we return to our linear recurrent sequence S of order k &#x3E; 2. Assume

that the associated characteristic polynomial of S satisfies the generalized
Artin conjecture. For the following, we distinguish two cases; either f splits
into distinct linear factors modulo p, or not. In the former case we say that

p is a splitting prime or that p splits completely.
First we take for T the set of primes that split completely. The set T

has positive density by Chebotarev’s density theorem For p E T, the group



308

is isomorphic to F*, and has exponent e(p) = p - 1. By
assumption there exists h E such that the set Th of primes p E T for
which a E has order (p - 1 ) /h, has a positive density. According
to our heuristics, the ’probability’ that p E Th does not divide the sequence
is (1 2013 i)(P")/. For p - oo this expression converge to which

p
lies strictly between 0 and 1. Therefore, we expect that Th contains two
subsets of positive lower density, one consisting of primes that do divide
the sequence, and one consisting of primes that do not divide the sequence.
As a consequence, it seems plausible that the set of primes in T that divide
,S’ has a positive lower density, strictly less than 1. Note that although the
above formula for the ’probability’ does give us an indication of what to
expect, it does not pretend to give a precise value for the density of the set
of primes in Th that divide ,S’. Therefore, our heuristics do not predict the
existence of the density of the set of primes in T that divide S.

Now, let T be the set of primes that do not split completely. For h E 
we define Th as the set of primes p E T for which the order of a E (O/P 0)*
is equal to e(p) /h. As f does not split completely modulo p E T, we have
e(p) ~ p2 -1. Using our heuristic formula, we expect the ’probability’ that
p E Th does not divide S to be at most (1 2013 ) )/. This expressionp

converges exponentially to 0, for p - oo. Therefore, for all h E the
subset of Th of primes that do not divide the sequence, should have zero
density. According to our generalization of Artin’s conjecture, the density
of Uh5:nTh gets arbitrarily close to 6(T), for n -~ oo. As a conclusion, we
expect the set of primes that do not split completely and that do not divide
the sequence to have zero density.

Up to now, we discussed linear recurrent sequences of any order k &#x3E; 2.

The theorem below and the data in section 5 support the above heuristics
for linear recurrent sequences of order k &#x3E; 3. However, for a specific lin-
ear recurrent sequence S of order 2 with irreducible polynomial, the above
heuristics are proved to be false. Let ,S’ = be the linear recurrent

sequence with irreducible characterisitic polynomial f = X 2 - 5X + 7 and
initial values xl - 1 and X2 = 2. Let a and a be the roots of f and de-
note by 0 the ring of integers of Q(a). Lagarias [6] showed that a prime
p divides ~’ if and only if the order of a/a E is divisible by 3.
This condition is equivalent with certain spitting conditions for p in certain
number fields. Using Chebotarev’s density theorem, Lagarias showed that
the set of primes that do not split completely in K/Q and that do not
divide ~S’ has positive density. According to our heuristics, this set should
have zero density.

Let ,S’ be a linear recurrent sequence of 3. Recall from section
2 that a denotes the residue class of X in the ring 0 = Z ( d ~ ~X ~ / ( f ) , where
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d is some fixed integer. Define for each h E Z&#x3E;i the set

Th = {P : f is irreducible modulo p, and [((O/pO)* : (1i)] = ~}.

Theorem. Let S be a linear recurrent sequence of order k &#x3E; 3, and define
for each positive integer h the set Th as above. For every positive integer
h, all but finitely many primes in Th divide S.

We will prove this theorem in the next section. The main idea of the proof
is to relate the primes p E Th that divide S to the existence of Fp-rational
points on some projective algebraic variety defined over Fp. For large p,
the existence of these points is guaranteed by a result of Lang and Weil.
The theorem does not imply that Ps contains a set of positive density.

There are two problems. First of all the set T of primes p for which f E
Fp[X] is irreducible might be empty, for example if f is reducible over Q. If
f is irreducible, a necessary and sufficient condition for T to have positive
density, is the existence of a k-cycle in the Galois group of f . Namely,
suppose f is irreducible modulo the prime p. The decomposition group of
a prime above p in a normal closure of Q[X]/(f) acts transitively on the
roots of f , and therefore contains a k-cycle. The fact that the existence of a
k-cycle is sufficient for T to have positive density follows from Chebotarev’s
density theorem.
Much more difficult is the question whether there exists h E Z&#x3E;i such

that Th has positive density. An affirmative answer to this question is pre-
cisely the generalization of Artin’s conjecture that we discussed above. In
order to conclude that Ps has positive lower density, we need the following
precise version of this conjecture.

Generalized Artin conjecture: Let f E Z[X] be an irreducible monic
polynomial, a a root of f, and define K = Q (a) with ring of integers O K .
Furthermore, let T be the set of primes that are inert in and define
for each h E Z&#x3E;l, the set Th of primes p E T for which the subgroup
(1i) C has index h.
Then Th has a natural density 6(Th) for all h E Moreover, we have
the equality = 8(T).

As we saw before, although it happens that the conjecture fails to hold for
specific a, we expect the conjecture to hold for ’generic’ a. Based on com-
puter calculations for quadratic polynomials, Brown and Zassenhaus made
a similar conjecture [2]. Under some mild assumptions on the polynomial
f , they conjectured that the set Tl has positive density.
The generalized Artin conjecture has been proved for integers a 0 (0, + 1 ) ,

or, equivalently, for linear polynomials f , under the assumption of the gen-
eralized Riemann hypothesis [5, 7, 14]. Under the same assumption, we
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proved [12] that part of the conjecture holds for irreducible quadratic poly-
nomials f . Unfortunately, we are not able to prove the generalized Artin
conjecture for a single polynomial of degree at least 3, not even under the
assumption of the generalized Riemann hypothesis.

Corollary. Let S be a linear recurrent sequence of order k &#x3E; 3. Assume
the associated characteristic polynomial satisfies the generalized Artin con-
jecture, and contains a k-cycle in its Galois group. Then Ps contains a set
of positive density

Proof. Let a be a root of the characteristic polynomial f , and let OK be
the ring of integers of the number field K = Q(a). For all primes p not
dividing d, the ring O/pO is isomorphic to By the assumption
on f , we conclude that Th has a density 6(Th) for all positive integers h.
According to the theorem, the density of the set TS h of primes p E Th that
divide S is equal to 6(Th) . Denote the upper density and lower density of
Ts = T fl PS by S(TS) and 6(TS) respectively. Using the above remarks, we
find:

r’V"’B I"V’B

We conclude that the set Ts has a density and moreover we have 
6(T) . As the Galois group of f contains a k-cycle, this density is positive.

D

4. Proof of the theorem

As in section 2, we choose an integer d # 0 such that xn = 
where 0 = R (X ~ / ( f ) is a free algebra over R = Z[~j, and c e O is uniquely
determined by Fix h E Z&#x3E;i and define the set

Let p E Th be a prime not dividing d and write 1i for the reduction of a
modulo pO. By assumption f is irreducible modulo p, and = 

is a field of order pk. As is cyclic, the subgroup generated by 1i
consists of the h-th powers in ((O/pO)*, and we find

Together with the equivalence (4) in section 2, this yields the following
characterization:
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We will show that if p is large enough, then the right hand side of (5) is

satisfied. This implies that all but finitely many primes in Th divide ,S’, and
the theorem is proved.
By extending scalars, we find that O[X,,..., Xk] is a free JR[Xi,..., Xk]-

algebra. Define the homogeneous polynomial

Note that Fh is independent of the prime p. The coefficient 
of Xl in Fh is the h-th term of the sequence S. If this coefficient is zero,
then all primes divide S and the theorem is proved. Therefore, we assume
that is non-zero, so Fh is homogeneous of degree h. Let Vh C

be the projective algebraic set defined by F~. The reduction Vh
of Vh modulo p is given by the polynomial

For j?i,... x~ E Fp, the equation on the right hand side of the equivalence
(5) becomes Fh(xl, ... , Xk) = 0, so we arrive at

where Vh(Fp) denotes the set of Fp-rational points of Vh.
In order to prove that Vh is a non-singular projective variety, we let

Wh c Pk-1 (FP) be the projective algebraic set defined by

If p f h and c ~ 0, then the partial derivatives of Gh do not vanish si-
multaneously on and Wh is a smooth projective hypersurface
of dimension k - 2. As k is at least 3, the intersection of two different
irreducible components of Wh is non-empty by [3, Theorem 7.2 on page
48~. However, the points of such an intersection are singular points of Wh.
Because Wh is smooth, this proves that Wh is absolutely irreducible.

Note that if k equals 2, then Wh (Fp) consists of h points, and is not
absolutely irreducible.
The varieties Wh and Vh are isomorphic over Namely, we can

define a morphism o : Wh by the equations
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The determinant of 0 is equal to times the Vandermonde determinant

of 1iP, ... , As d E OlpO is of degree k over Fp, the determinant
is non-zero and 0 is an isomorphism. We conclude that for all p E Th that
do not divide cdh, the algebraic set Vh is a smooth, absolutely irreducible
hypersurface in Pk-1(Fp) of degree h.
The result of Lang and Weil [8, Theorem 1] yields the following estimate

for the number of rational points of Vh: there exists a constant C, depending
on h and k only, such that for all primes p E Th not dividing cdh we have

Note that instead of [8] one can also use the Weil-conjectures to obtain
this estimate. We conclude that if p E Th is large enough, then Vh (Fp) is
not empty and (6) implies that p divides ~S’. This finishes the proof of the
theorem.

5. Numerical examples

In the table below, we have collected some numerical data. For each of
the five recurrences, there are two recurrent sequences. For each of these

sequences, we determined how many of the 5133 primes up to 5 -104 divide
the sequence and ordered them by their splitting type. For example, for
853 primes up to 5 - 104, the polynomial f = X~ - 2X 2 + X - 6 E Fp[X]
splits into three linear factors. Out of these 853 primes, 293 divide the
sequence defined by f and the initial conditions xi = 1, x2 - -2 and
X3 = 5. A ’mixed’ splitting type just means that f E Fp[X] factors as
the product of a linear an a quadratic polynomial. The first 6 sequences
have an irreducible characteristic polynomial with Galois group 63, the
symmetric group on 3 elements. For the next 2 sequences, the polynomial
is irreducible with cyclic Galois group. The characteristic polynomial for
the last two sequences factors over Q as a product of a linear and a quadratic
factor.

For each of these sequences, the conclusions that we drew on heuristic

arguments in section 3, seem to be correct. Almost all primes that do
not split completely, divide the sequence, and out of the primes that split
completely, a positive proportion does divide the sequence and a positive
proportion does not.
The first two characteristic polynomials are related. If a is a root of f =

X~-2X~+X-6, then ~3 is a root of 9 = X 3 - 254X2 - 3311X - 46~56.
In other words, the third and the fourth sequence are subsequences of the
first and the second, respectively. Therefore, the first sequence has at least
as many prime divisors as the third sequence. The heuristical arguments
in section 3 explain why the first sequence has considerably more splitting
prime divisors than the third sequence, and why both sequences have almost
the same number of non-splitting prime divisors. First we note that as a
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and fl define isomorphic number fields, the splitting type of f modulo p is
the same as that of g modulo p. Our heuristical model predicts that for any
linear recurrent sequence S of order k &#x3E; 3, almost all primes that do not
split completely should divide ,S’. In particular, almost all primes that do
not split completely divide both the first and the third sequence. Now let p
be a splitting prime, so the ’probability’ that p does not divide either of the
sequences is positive. If the order of a E (0/ pO) * is not relatively prime to
6, the order = as is smaller than that of a. According to our heuristics,
it is then more likely for p to divide the first sequence, than to divide the
third. For example, there are no odd splitting primes p for which the order
of fl E (0 /pO) * is p - l. On the other hand, out of the set of primes that
split completely, the primes p for which the order of a E (0 /pO) * is p -1,
have the largest ’probability’ to divide the first sequence. Therefore, the
number of splitting primes dividing the first sequence should be larger than
the number of splitting primes dividing the third sequence.

We conclude with a few observations. As we can see from the fifth and the
sixth sequence, the number of splitting primes dividing a linear recurrent
seems to dependent not only on the characteristic polynomial, but also on
the initial conditions. This can not be explained by our heuristics.
Our theorem is in fact empty for the fifth and sixth sequence. Namely,

let a be a root of f = X 3 - X2 - X -1, and let p be a prime for which f is
irreducible modulo p. As a has norm 1, the index (1i)] is at least
p-1, and the set Th is finite for all h E This argument also shows that
the generalized Artin conjecture does not hold for f . However, the data
suggest that our heuristical conclusions on the number of prime divisors
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is still correct. This can be explained by the assumption that for ’most’
primes p, the order of a E is still ’as large as possible’. To be
more precise, if we adapt our heuristics by replacing e(p) by the exponent
e(p) of the kernel of the norm N : (C~/pC7)* -~ Fp, we can draw the same
conclusions as in section 3. For a generalization of Artin’s conjecture for
units in real quadratic fields, we refer to [11].

Finally we note that further numerical experiments seem to suggest that
for the sequences ,5’ in the table, the splitting primes dividing ,S’ have a

density. As an example, from the table we see that 34% of the 853 splitting
primes up to 5 ~ 104 divide the first sequence. We computed that out of the
first 853 splitting primes greater than 5 - 104, this percentage is 35%.
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