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Construction of Ray Class Fields by Elliptic Units

par REINHARD SCHERTZ*

RÉSUMÉ. En multiplication complexe, il est démontré que les
unités elliptiques sont contenues dans certains corps de classes
de rayon sur un corps quadratique imaginaire K, et Ramachan-
dra [3] a démontré que ces corps peuvent être engendrés sur K
par des unités elliptiques. Pourtant les générateurs construits
par Ramachandra impliquent des produits assez compliqués de
grandes puissances de valeurs singulières de la fonction de Fe-
lix Klein définie plus bas, ainsi que des produits de valeurs du
discriminant A. Nous démontrons dans cet article que dans la

plupart des cas un générateur est donné par une puissance d’une
valeur singulière de la fonction de Felix Klein ou bien par le quo-
tient de deux de ces valeurs. Ces dernières sont trés utiles pour
des raisons numériques, car les coefficients de leurs polynômes
minimaux sont relativement petits, ce qui est mis en évidence par
des exemples en fin d’article.

ABSTRACT. From complex multiplication we know that elliptic
units are contained in certain ray class fields over a quadratic
imaginary number field K, and Ramachandra [3] has shown that
these ray class fields can even be generated by elliptic units. How-
ever the generators constructed by Ramachandra involve very
complicated products of high powers of singular values of the Klein
form defined below and singular values of the discriminant A. It
is the aim of this paper to show, that in many cases a generator
over K can be constructed as a power of one singular value of the
Klein form or as a quotient of two such values. The latter are

very suitable for numerical puposes because it turns out that the
coefficients of their minimal polynomials are rather small, as it
can be seen in the numerical examples at the end of this article.

* The results of this paper were obtained during an invited stay at the University of Bordeaux.
They were favoured by the warm hospitality of the Institute for Mathematics.

Manuscrit reçu le 18 avril 1997.
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1. Introduction and Results

We let L be a lattice in C and wl, w2 a Z-basis of L with W2 &#x3E; 0. The
normalized Klein form is then defined by

Here a denotes the a-function of the Dedekind eta-function. z* is
defined by

with the real coordinates zl, Z2 of z = zlwl + and the quasi-periods
of the elliptic Weierstrass (-function of L belonging to Wl, W2 -

In what follows let Il be a quadratic imaginary number field of discrimi-
nant d, D the ring of integers in Ii and f an integral Ideal of D . We denote
by the ray class field modulo f over K, and we assume that f is also
the conductor of K(f)IK. We fix a basis of f with &#x3E; 0. Then
for v E ~ we have 

where f = min(N n f) is the smallest integer in f. It follows from the
transformation formula of the eta-function, that the 12-th powers of the
values in (3) or their quotients are independent of the choice of basis in f.
So we can write more elegantly

Using this notation we collect some known facts in Theorem 1 and 2.

THEOREM 1. 1) cp (v If)12J E for every v E ,i7 ~ f.
2) The action of a Frobenius map Q(c) of Ii(f)/K belonging to an integral
ideal c prime to f is given by

THEOREM 2. 1) If gcd(f, f) = 1, then for v E D B f the value c~ (v If)12J is
the f-th power of an element of K(f).
2) Let A be in ,~7 and b, c primitive ideals of norm b, c, such that 6c is

primitive and prime to N(f). We decompose
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where f* E N‘ is the non split part of f and f** E l~Y the split part of f .
Further we assume N(6) - 1 mod 12 and N(a6) - 1 
the notation W2] := we can find an elerrcent {3 E K, &#x3E; 0,
such that

With this choice of basis we define

putting V*(zlL) := The trace of f,~ being prime to f** there
is a solution a E Z of the congruence a. trace( f,Q) - r’ 26,-1 mod f **. We

2,..a

set
Then 

- - - 11

,. , ,

Further we have the Galois actions

In the following let

be the decomposition of f into powers of prime ideals. We define

By W we denote the subgroup of roots of unity in K, and we set

Using this notation we can now state the main results of this article in the
following two Theorems:
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THEOREM 3. Let f be the conductor of We assume that either f
is the power of a prime ideal or satisfies the condition

ej ,~2 for j=1,...,s-1 and ea ,~2w, lgcd(6, w).
We let 6 be an integral ideal of I( prime to f , whose ideal class in the ray
class group ,~f mod f has an order different from 1 and 3. Then the numbers

are generators for the extension Of course, the same is true for
all roots of these numbers that, according to Theorem 2 are in 

If the hypothesis of Theorem 3 about the pj’s is not satisfied we can
prove a somewhat weaker result. An arbitrary integral ideal f can always
be decomposed in the form

where f 2 equals D or satisfies the hypothesis of Theorem 3. f 1 is the product
of low powers of certain prime ideals above 2,3,5 in the case d  -4 and
also above 7 in the case d = -3. Given such a decomposition we set

I

and we state the hypothesis
(10) For any given complex numbers çp, P E Pt, there exists a character X
of Ai such that X(p) =I ~p for E Pf.
THEOREM 4. Let H denote the Hilbert class field of h’ and let b = (A)
be a principal ideal in D prime to f, whose ideal class in A-fhas an order
different from 1 and 3. Then under the hypothesis (10) about f the numbers

.I%.-

are generators for the extension I( (f) / H .
However numerical examples computed so far suggest the

CONJECTURE. The assertions of Theorem 3 and 4 hold for an arbitrary
conductor f and for every ideal b prime to f , whose ideal class in 9-f is of
order different from I.
We will explain later, why our method of proof does not carry over to a

full proof of the conjecture.
In view of Theorem 4 one would like to have also a generator for H that

is numerically usable. For this pupose we quote from [5] the
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THEOREM 5. Let A be the discriminant from the theory of elliptic functions
and let a and b be non principal integral ideals of K. We assume further
a = b if a2 and b2 are principal. Then

The condition "a = b if a2 and b2 are principal" is missing in [5]. It is
in fact necessary, because otherwise the element in Theorem 5 is a relative
norm to a proper subfield.

It has been worked out in [6] that in many cases the generators in Theo-
rem 5 are even 24th powers of elements in H. This is for example true if a
and b are non principal prime ideals of norm =1 mod 12 or if the discrim-
inant is prime to 6. In fact one can show using [6] that apart from trivial
exceptions the ideals a and b can always be chosen so that the generator in
Theorem 5 is a 24th power of an element in H.

2. Proofs

Theorem 1 and 2 contain known facts that can easily be derived from
Stark’s reciprocity law [7] and the method described in [6], as it is explained
in [4], [6] and [7].

To prove the assertions of Theorems 3 and 4, we let

be the Artin map between the ray class group 9-f and the Galois group of
For a character X of Rf we consider the sum

J

Let f x denote the conductor of x, and for every integral ideal t satisfying
fxltlf we denote by the same letter the corresponding character of At. For
f = f x and X 0 1 we know from Curt Meyer [2] that the above sum appears
as a factor in the value of the L-function of K belonging to X at s = 1.

Hence

Moreover, we find in [3] the relation
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where w and wf,, denote the number of roots of unity in Il congruent to
1 mod f resp. mod fx - Of course, on the right hand side in (14) X must
be understood as a character of We give a sketch of the proof of (14),Itf"
which is easily deduced from the following relation between Klein-forms [1]:
For any two complex lattices L C L’ and for any torsion point t L,
M

where m = N) and N an integer such that NL’ C L. By the
exponent 12 the factors in (15) become independent of the choice of basis
in L and L’, and, due to the exponent m, the values of p are the same
when t is changed modulo L’. We set t =1, L’ = f , L = jp with an integral
ideal f and a prime ideal p of K. Then (15) can be rewritten in the form

where m = l2fN(p) and ef denotes the unit class in Aj. Now, taking
conjugates and logarithms of (16), we find the relation

which implies (14). We observe that Af(x) may vanish if f ~ f X. This is in
fact the obstacle for the proof of the above conjecture. However Af(x) is
non zero for enough f’s and x’s to prove the following lemma, which yields
the proof of the Theorems 3 and 4.
The proof of Theorem 4 is obtained in the same way. We observe that

the subgroup it in (19) corresponding to the intermediate field L generated
by E over H consists of principal ideals, thus making the application of
Lemma 1 possible.

LEMMA 1. Let a and b be ideals in K, prime to f and not contained in the
unit class Then under the hypothesis of Theorem 3 about f and d
there exists a character X of ~f satisfying

The same assertion holds under the hypothesis of Theorem .~, if a and 6 are
principal.
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We postpone the proof of lemma 1 and begin by showing how the asser-
tions of Theorems 3 and 4 follow from it:
Proof of Theorem 3: Assume that

generates over K an intermediate field L of We consider the

diagram of the fields in play and corresponding subgroups of 9-f:

We assume now that K(f). Then U # ~1}, and by lemma 1 there
exists a character X of ~f with the property

This leads to a contradiction for, appealing to = c for f) E U, we can
rewrite Af(x) in the form

where the inside sum of the right hand side must be zero because 1.

Hence L = This proves the first assertion of Theorem 3. The second

assertion is obtained in the same way. Setting

We assume that L # and as in (21) we find
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where il denotes the subgroup of Aj corresponding to L. The assumption
K(f) implies ~1}, and we get a contradiction if, according to the

lemma, we choose X so that

This completes the proof of Theorem 3. 
Proof of lemma 1:

It suffices to prove the Lemma when the orders of a and b are prime
numbers.

It is an elementary fact about a finite abelian group G, that for two elements
in G different from the unit element there exists a character whose value at
the two elements is different from 1. So for a and b satisfying the hypothesis
of lemma 1 we can find a character X of ~f so that

We will now change X so that in addition to (27) we have Af(X) 54 0.

If f is the power of a prime ideal p, this is not necessary, because then
x # 1 implies plfx. Otherwise we must look at the prime ideals dividing
the conductor of x. So we consider the character X of (D/f)* defined by x
via the homomorphism

with kernel (W + f) /f, ef denoting the unit class in ~f. According to the
decomposition

we can write ~ as a product

of characters Xi of and we have the implication
~ - ~ 2

Thus if all the xj are non trivial, we can conclude from (14) that 0.

Otherwise we change X so that in addition to (27) all the Xj are non trivial.
We assume that X, = 1. By definition of el and e, there exist characters

1b~ of (D/pF’)" and of order el and es. Furthermore by the
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hypothesis "p~. ;1 gcd(6, z.c~)" we can choose so that viewing as a

character of (~/ f )* we have

This implies that we can find K E N such that

is trivial on ( W + f) / f . Thus o can be viewed as a character of the image
in (28). Using the same letter we extend 9 to a character of ~f and set

Then because of el X’2 the conductor of X must be divisible by pi , whereas
the powers of p2, I ..., p, - 1 dividing f X are the same as those dividing f x. By
a suitable choice of p in (34) we must now achieve, that (27) ist satisfied
also for ~. This means

Now recalling q # 3 we distinguish the cases p = q = 2, p = q &#x3E;_ 5, and
p # q. If p = q = 2 we have 7P2(a) = 7P2(b) = 1 and (35) holds because
of xw(a),x-’(6) ~ 1. If p = q 2:: 5 and p Ael we can conclude in the
same way. Otherwise at most two prime residues J.L mod p are forbidden by
(35) hence at least two are left to satisfy (35). In the case p j4 q at most
one prime residue &#x3E; mod p is forbidden by (35) if p # 2 and at most one
prime residue p mod q, if q # 2. So we can find p by solving simultaneous
congruences.
Proceeding in this way for j = 2, ..., s - 1 we end up with a character X,
whose conductor is divisible by pi ..... If now p, lfx’ we set

We observe that ~2~‘ is non trivial because of e, /2w. Hence the conductor
of X equals the conductor of X times a power of ps . Furthermore p can bex 

- -

chosen so that (27) is satisfied by X. So x has the desired properties, and
Lemma 1 is proved under the hypothesis of Theorem 3.
We now let f satisfy the hypothesis of Theorem 4. Applying the above

construction, we find a character X with the property (27), whose conductor
is divisible by all the that are not in the set P~ defined in (9). ~ can
be viewed as a character of where f o is defined by
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We set

Then QR is a subset of Pf and thus by (10) for

there exists a character x’ of Ai such that

So by setting

we have constructed a character satisfying

and, appealing to (14), we have

Furthermore remembering that a and b are principal ideals, we see that
x’(a) = X’(6) = 1. So x satisfies (27), because X does. This completes the
proof of Lemma 1 under the assumptions of Theorem 4.
Examples:
In the following examples we consider elliptic units of the form

Computing their conjugates by Theorem 1 we determine their minimal

polynomial with respect to K.

Example 1: We set d = -19, f = (2 19) and a - ’7+ 2-is . * Then (A) has
order 3 in Jlj. So this is a case excepted in Theorem 3. But, confirming
our conjecture, the computation shows that the number E is a generator of
J~(2B/201319)/j~. The minimal polynomial is given by
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Example 2: We set d = -7, f = ~2 = (-1+~ ), which is one
of the cases excepted in Theorem 3 and 4. We choose A = 13. Then,
confirming the conjecture, E is a generator of I((f)/ I( with the minimal
polynomial 

, -, ,-,

, 
- 

, 
_____

Example 3: We set d = -88, f = (4) and A = 1 + 2 -22. Then, according
to Theorem 3 the number E is a generator of with the minimal

polynomial
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