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Classical and overconvergent modular forms

par ROBERT F. COLEMAN

The purpose of this article is to use rigid analysis to clarify the rela-
tion between classical modular forms and Katz’s overconvergent forms. In
particular, we prove a conjecture of F. Couv6a [16, Conj. 3] which asserts
that every overconvergent p-adic modular form of sufficiently small slope
is classical. More precisely, let p &#x3E; 3 be a prime, K a complete subfield of
Cp, N be a positive integer such that (N, p) = 1 and k an integer. Katz
[21] has defined the space Mk(f1 (N» of overconvergent p-adic modular
forms of level ri(N) and weight k over K (see §2) and there is a natural
map from weight k modular forms of level r1(Np) with trivial character
at p to Mk(rl(N». We will call these modular forms classical modular
forms. In addition, there is an operator U on these forms (see [15, Chapt.
II §3]) such that if F is an overconvergent modular form with q-expansion
F(q) = anqn then 

.

(In fact, all this exists even when p = 2 or 3 (see [21] or [9])). We prove,
Theorem 6.1, that if F is a generalized eigenvector for U with eigenvalue
A (i.e., in the kernel of (U - A)’ for some positive integer rt~ of weight k
and a has p-adic valuation strictly less than k - 1, then F is a classical
modular form. In this case the valuation of A is called the slope of F.
In the case when F has slope 0, this is a theorem of Hida [20] and, more
generally, it implies Couvba’s conjecture mentioned above (which is the
above conclusion under the additional hypothesis that the slope of F is at
most (k - 2)/2). This almost settles the question of which overconvergent
eigenforms are classical, as the slope of any classical modular form of weight
J~ is at most k - 1. In Section 7, we investigate the boundary case of
overconvergent modular forms of slope one less than the weight. We show
that non-classical forms with this property exist but that any eigenform for
the full Hecke algebra of weight k ~ 1 is classical if it does not equal 
(see below) where G is an overconvergent modular form of weight 2 -1~. In
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Section 8, we prove a generalization of Theorem 6.1, Theorem 8.1, which
relates forms of level ri {.Np) to what we call overconvergent forms of level
r1(Np) and in Section 9, we interpret these latter as certain Serre p-adic
modular forms with non-integral weight [30] .

The central idea in this paper is expressed in Theorem 5.4 which relates
overconvergent modular forms to the de Rham cohomology of a coherent
sheaf with connection on an algebraic curve. More precisely, we show that
there is a map for non-negative J~ from modular forms of weight -k
to modular forms of weight k + 2 which on q-expansions is 
When N &#x3E; 4, the k-th symmetric power of the first relative de Rham
cohomology of the universal elliptic curve with a point of order N over the
modular curve is naturally a sheaf with connection. Theorem 5.4
is the assertion that the cokernel of Ok+1 is the first de Rham cohomology
group of the restriction of this sheaf to the complement of the zeroes of the
modular form on X, (N) -

The above result, Theorem 6.1, is intimately connected with the conjec-
tures of Gouvea and Mazur on families of modular forms in [171 and [18].
Indeed, in a future article [9] we will use it to deduce qualitative versions
of these conjectures. (We will also explain how to handle p = 2 or 3 in [9 .)

We thank Barry Mazur for encouraging us to think about this problem and Fernando

Gouvea for helpful conversations.

1. The rigid subspaces associated to sections of invertible sheaves

Let v denote the complete valuation on the p-adic numbers Qp such that
v(p) = 1 and let Cp denote the completion of an algebraic closure of Qp
with respect to the extended valuation (which we still call v~ . We also fix
a non-trivial absolute value [ on Cp compatible with v. Suppose R is the
ring of integers in a complete discretely valued subfield K of Cp.

Suppose X is a reduced proper flat scheme of finite type over R and ,C is
an invertible sheaf on ~. Let s be a global section of ~C. Suppose x is a closed
point of the subscheme X := Y (9 K of ~. Let Kx denote the residue field
of x, which is a finite extension of K, so the absolute value on K extends
uniquely to Kx, and let Rx denote the ring of integers in Kx . Then, since
X is proper, the morphism corresponding to x extends
to a morphism X . Since K is discretely valued, is

generated by a section t. Let ¡;s = at where a E Rx we set = lal.
This is independent of the choice of t. We will, henceforth regard X as a
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rigid space over K. We claim, for each r &#x3E; 0 such that r E there is
a unique rigid subspace XT which is a finite union of open affinoids whose
closed points are the closed points x of X such that Is(x)1 ? r. Indeed,
there exists a finite affine open cover C of X such that the restriction of
to Z for each Z in C is trivial. For each Z E C, let tz be a generator of
G(Z) and suppose slz = fztz where fz E Let 2 denote the fiber
product of the formal completion of Z along its special fiber and SPec(K).
Then Z is an affinoid over K and n Z = {x E Z : ~ I fz (X) I &#x3E; r}.
Since this is known to be the set of points of an affinoid [2, §7.2], we have
established our claim. Now, for r E R, r &#x3E; 0, the set of closed points of
x such that such that Is(x)1 [ &#x3E; r is also the set of closed points of a rigid
space X(,) as E &#x3E; r} is an admissible cover. ,

Alternatively, if L is the line bundle whose sheaf of sections is G then
there is a natural metric on L and if we regard s as a section of L 2013~ X, Xr is
the pullback of the rigid subspace consisting of points greater than or equal
to r. Or, if a E R and Jo) = r, then Xr may be identified with the fiber prod-
uct over R of Spec(K) and thep-adic completion of SPecX(Syrn(G)/(s-a))_
(One can deal with sections of locally free sheaves just as well.)
Now suppose X is an irreducible curve and r e ICpl. Then, either Xr is

an affinoid or Xr = X, because such is true for any finite union of affinoids
in an irreducible curve. If the reduction 9 of s is not zero and

r # 0, then XT is an affinoid. In fact, if X is smooth, 9 has only zeros of
multiplicity one and 1 &#x3E; r &#x3E; 0 we claim XT is the complement of a finite
union of wide open disks. Indeed, suppose all the zeroes of s are defined
over R (this is not really necessary, it just makes things easier to visualize).
Let C etcetera. be as above and let Z E C. Then tz is a local parameter
at Q for each zero Q of s in Z and, in particular, the restriction tQ of tz
to the residue disk containing Q gives an isomorphism onto the unit disk
B(0,1). Moreover, Xr n Z = Z - U r). This establishes the above
claim. It follows that is the complement of a finite union of affinoid
disks and so is a wide open by definition. (See [6] and also [28].) Such

spaces are quasi-Stein spaces [24].

2. Application to overconvergent modular forms

Let p &#x3E; 3 be a prime and let N &#x3E; 4 be an integer such that (p, N) = 1.
Let X denote the model with good reduction of X1(N) over R and C the
subscheme of cusps. (We will also use C to denote the degree of the di-
visor C when no confusion will arise). Let E -~ X denote the universal

generalized elliptic curve with r1(N) structure X be the sub-



336

scheme of E consisting of points smooth over X and 13 = Let
and W = 

Now w is an invertible sheaf and we have a section of Since

the reduction of Ep- i vanishes simply at each supersingular point, the rigid
spaces X(,) = &#x3E; r} are each the complement of a union of
affinoid disks, one in each supersingular residue disk by the discussion of
the previous section.

Let Z = Xi, Wl - X(p-P/(P+l» and W2 = Then W2 C Wi
and Z, the ordinary locus, is the unique minimal underlying affinoid (see
~6~ ) of either WI or W2 containing the cusps. Let Mk := 
:= w*’(Wi) for k E Z. Then Mk may be described in terms of Katz’s
overconvergent forms of weight k. Indeed, if r E R, may be

identified with S(R, r, N, k) (see [21, §2.9]]) and Mk = 
a

where s approaches from above. We call the sections of úJk on Z
convergent modular forms and those of Xs for any s  1 overconvergent
modular forms.

Remark. We point out that Katz’s overconvergent modular forms are only
defined for integral weights while Serre’s p-adic forms -may have weights in
Zp x Z/ (p - I)Z. Katz’s discusses the relationship between the two types
of objects in [21, §4.5]. In particular, he shows that Serre’s forms of weight
(k, k) for integral k are his convergent forms of weight l~. In a future article,
we will introduce a notion of "overconvergent" p-adic modular forms with
weight in x Z/(p - I)Z which incorporates the forms of both
Katz and Serre (see also §9).

Let Ei denote the pullback of Earn to Wj . Katz describes [21, Sect. 3.10~
a commutative diagram

where 4i and § are finite morphismes. There is a canonical family of subgroup
schemes IC of rank p over tVi in the family of elliptic curves El over WI
and 0 is a morphism such that the family over W2 is canonically
isomorphic to the pullback .E~~ ~ of .~1 to T~f~2. Then 16 is the composition
of the isogeny 7r: EZ -~ E2/JCE2 and the natural projection from E~~ * } to
El .
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Using this we will make 0* -linear transformations Vk:Hk(W2) -&#x3E; llk(W1)
for k E Z, k &#x3E; 0 (note that 1-lo = Ox).

We first observe that the complex C) is naturally isomorphic to
the complex (logC). What this means is that we get a natural
map of complexes,

which takes g4!*(a) to where g is a section of and
a is a section of for an open set V of El. Second, as

We get a map

Similarly we get a map

which we also call Yk .

We have a natural map of complexes
yields maps and

which we denote by F~ .

Now we have the Gauss-Manin connection Vk with log-poles at C on
1tk. I.e. and it is easy to see that

as maps from xk(W2) to (0B (log C) and from to

(Ok ~?L~~(W2) respectively.
We can also describe Vk as the composition:



and Fk as the composition

From this it is easy to see that if h E and g then

This is also true with H replaced by Sl’ 01-£.
Remarks. The restriction of Hk to Z (or better the dagger completion of
Z) is an F-crystal in the sense of Katz [22] if one takes the map from 
to rlk to be (~* ~ ~ .
We will, henceforth, use ** to denote (jt* )*’ .

3. Hodge and U

0 the Hodge filtration on 1ik is a descending filtration

such that, for 0 ::; i ::; r and 0 ::; j $ s,

as coherent sheaves. It is clear that Vk and respect these filtrations.

We observe that 1, is self-dual with respect to a natural inner
product ( , )k: x 1ik ---~ which when J~ = 1, away from the cusps,
is just the cup product and more generally satisfies

for fi, gi local sections Of1il. This leads, in particular, to the exact sequence

which together with (3.1) implies Gri1-lk = is canon-

ically isomorphic to Wk-2i.
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We will identify Mj with Gro1tj(W1) when j &#x3E; 0 and with 

when j  0. We let be the operator on Mj

We will frequently drop the subscript (j) from U(j) when the context makes
it clear on which space we are acting and sometimes abuse notation and
allow to mean when j &#x3E; 0.

Remark. The operator extends to any of the spaces for any
1 &#x3E; s &#x3E; but any overconvergent eigenvector for U(k) analytically
continues to Wl. (See the proof of [16, Cor.II.3.18~.) The value of consid-
ering these larger spaces is that for s E IKI they are Banach spaces and
one can apply the theory of Serre [29].

Suppose g E Mk. We set equal to Fk(g)/pk = when
k &#x3E; 0 and Fk(g) when k  0. So that E Wk(W2). It then follows from
(2.4) that if h E wi (W2) and kj &#x3E;_ 0,

In particular, if h E Mk and a is a rigid function on W2 then

Equation (3.3) will follow, in general, from the following proposition.

Remark. The map Q is what is called cp in [21, §3] (and Frob in [16, Chap.
2 §2]), which is only defined there when k &#x3E; 2 in general and when k = 1 in
some cases. Indeed, we may regard an element h of Mk as a function which
assigns to pairs (G/ B, w) where B is a K algebra, G is a fiber of E1/W1
over a B valued point of WI and w is a differential on G which generates
the invariant differentials on G over B, an element H(GIB, w) of B by the
rule hIG = h(G/B, w)wk. Then if G/B is the fiber over a B valued point of
W2
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PROPOSITION 3.1. Suppose k &#x3E; fl. The map induced by ~~ o Resy~’j’j,.2 on
Mk-2i is for 0 ~ i  k.

Proof. We pass to the underlying affinoid Z and repeat all previous con-
structions in this context. This gives us the advantage of not having to
worry about the fact that W2. We will let A denote the pullback of
E to Z.

We will now follow Appendix 2 of [21] . (Note: What is denoted by the
symbol p there is what is called 4&#x3E;* here.)

Suppose v is an invariant differential on ~4 generating w. Then, **v =
Av(4* ) and ~-* v-1 - ~ {v~ x } t~* ~ for some invertible A. Suppose f is a section
of such that f = au(h)(A, modulo Filk+l-i11.k where
h is a weight k - 2i modular form and a is a rigid function on Z. (Here we
are using the equation (3.1).) Then,

Now then,

using (2.3), while

Thus

and so, on Grz, Vk acts as using (3.4).

4. Kodaira-Spencer and the theta operator

We have a Kodaira-Spencer map K,: CJ.)2 2013~ of coherent sheaves
on Xl(N) defined as follows: If w and v are two local sections of w we set
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where on the right we regard w and v as sections of This map is an

isomorphism. More generally, we have an injection of sheaves
.. - .. .

determined by the correspondence

where 77 is a local section of c~~ and on the right we regard it as a local
section of 1-lk.

PROPOSITION 4.1.

Proof. Suppose
the one hand,

Then on

On the other hand,

The proposition follows from this and the definitions. I

LEMMA 4.2. The map

is an isomorphism of sheaves of vector spaces.

Proof. The map shifts the filtrations by 1 (Grif-
fiths transversality) and induces isomorphisms on the graded pieces by what
we know about the Kodaira-Spencer map. I

This implies that we get a natural map M_k -&#x3E; Mk+2. Indeed, let
w E M_kw-k(W1). Lift it to a section w of 71,. Let s be a section of
Fi117-lk on Wl such that Vail = Os modulo

Then the map is t~ 2013~ V(n) 2013 s)). At the cusp oo, one computes (see [7, §91)
that this map is 

- . 7 I 1 - -

where 0 = qd/dq. In particular,
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PROPOSITION 4.3. There is a linear map from M-k to Mk+2 which on
q-expansions is 

We will, henceforth, denote this map by the expression ok+l - Katz tells
us [21, Appendix 1] that we can "canonically, but not functorially," regard

for l~ &#x3E; 0, as 
." - .

Suppose f E Mk. Suppose first k &#x3E; 0. By the above we can consider it as
a section Then Vf is a section of (log C). By virtue of Katz’s
decomposition (4.1), we can project onto which by
virtue of Kodaira-Spencer isomorphism we can identify with Mk+2- Call
this element 6k f . Now suppose k  0. By (4.1), we can regard f as an ele-
ment of 1-l-k(Wl). Then the projection of V-kf onto Mk 
can be regarded as an element of Mk+2 and we call this element 8kf. In
either case, calculating at oo we find

We will use this to show in [11~ that 0(f) is not overconvergent when neither
f nor k equals zero. 

5. Cohomology

For a rigid analytic open subspace W of Xl(N) set

Let SS denote the set of supersingular points on Xl (N) mod p and let
SS be a set of liftings. (We will also denote by SS the degree of the divisor
SS when appropriate.) By [5, Theorems 2.1 and 2.4), via the natural maps
H(k)(Wi) and H(k) (W2) are both isomorphic to

where Q (1ik) (log SS) is the complex

We therefore let H(k) denote any one of these cohomology groups. The
above and (2.4) imply
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THEOREM 5.1. The space H(k) is finite dimensional and F and V induce
endorriorphisras Frob and Trer of H(k) such that

Let ]C[ denote the union of the cuspidal residue classes and ]88[= W1-Z.
Then JSS[ is the inverse image in WI under reduction of SS and af-
ter étale base extension is a disjoint union of wide open annuli, one for
each element of SS. We call these the supersingular annuli. Now let

be the subcomplex of rf (1ik), ’H.k 0 xk,
where Ic is the ideal sheaf of the cusps. We let denote the kernel
of the map H(k)(]C(U~SS[). This is naturally isomorphic to the
classical weight k parabolic cohomology on Xl(N) which is the image of

Also, stable
under Frob and V er and

THEOREM 5.2. There is a natural perfect pairing

such that

Proof. It is classical that the self-duality of 1ik leads to a perfect pair-
ing on (essentially Poincar6 Duality between compactly and non-
compactly supported cohomology). By standard arguments (e.g. see [6,
Thm. 4.5]) we can compute it as follows: Let h and g be elements of
(1-lk 0 with trivial residues on the supersingular annuli and
let [h] and [g] denote their respective cohomology classes in Hpar(k) . It

follows, in particular, that for each supersingular annulus A, there exists
a ÀA E such that V ÀA = IIA- For each supersingular point x of
Xi (N) let Ax denote the supersingular annulus above x. Then

where ResAx is the residue map associated to the orientation on Ax coming
from WI (see [6, §3]). Now let Tx be an orientation preserving uniformizing
parameter on We may write


