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On the average number of direct

factors of a finite Abelian Group

sur les variété abéliennes

par Hartmut MENZER

1. Introduction

Let a(n) denote the number of non-isomorphic Abelian groups with n
elements. This is a well-known multiplicative function such that =

’(a). Historically, the summatory function A(x) := E a(n) was first in-

vestigated by Erd6s-Szekeres [2] in 1935, and from that time much research
was done on this subject (for an account the reader is referred to Chapter
14 of A.Ivi6 [3] or Chapter 7 of E. Kratzel [5]).We remark, that the best
published estimate of A(x) is due to H.-Q. LIU [8]. He obtained the result

with A(x) «~ x40/159+e and 40/159 = 0.251572.... For a = Re(s) &#x3E; 1 we

define the Dirichlet series

00

and

It is easy to show that
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where C(s) as usual denotes the Riemann zeta-function.

Furthermore, we define the multiplicative functions t(n) and w(n) by
the Dirichlet convolution in the following way t(n) := E a(u)a(v) and

uv=n

w(n) := E 
uv=n

Thus for any prime p and integer a &#x3E; 1 one has

J2013~

In particular, since P(1) = 1, P(2) = 2, P(3) = 3, P(4) = 5, we have
t(p) = 2, t(p2) = 5, t(p3) = 10, t(p4) = 20 and w(p) = 3~Wp2) = 9, 
22, W (p4) = 68.

In this paper we shall be concerned with obtaining estimates for the
sums T(x) = ¿ t(n) and W(x) = ¿ w(n). The asymptotic behaviour

nx 

of T(x) was first studied by E. Cohen [1] and Kratzel [6]. It is known that
T(z) = £ T(G), where T(G) denotes the number of direct factors of an

Abelian group G.

In [10] Seibold and the author proved the representation

T(x) = 

with CE x45/109+e. and 45/109 = 0.412844.... Furthermore A.
Ivi6 [4] proved several estimates for the sums E t~‘ (n) and E t(nl ) with

~,~

k = 2, 3, 4 and 1 = 2. 
--

The aim of this paper is to establish new asymptotic results for T(x)
and W(x). First, we prove a sharper result for Ll1(x) and get the estimate

C X9/22 log4 X (9/22 = 0.409). Second, we establish a representa-
tion for W(x). We prove the following result
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with the error term A2 (z) « X 76/153 (76/153 = 0.496732 ... ) . Here
.K2 (x) are well-known functions which will be defined by (32) to (37) later.

The paper has the following structure. In section two we formulate four
preliminary lemmas. In section three we prove four theorems. Theorem 1
and Theorem 2 describe results for two special divisor problems with the
dimensions four and six, respectively. In Theorems 3 and 4 we obtain two
results based on the first and second theorem.

2. Preliminary Results

Throughout the paper Landau’s 0-symbol and Vinogradoff’s «-notation
(all constants involved are absolute ones) and the well known function
9(t) = t - [t] - 1/2 are used. Furthermore, we denote the Euler’s con-
stant by C,

and the constant 01 by

LEMMA 1.

(1) a) " Let d(1,1, 2, 2; n) denote the divisor function d(1,1, 2, 2; n) _
#{(nl,... n4) : nlrc2n3n4 = n} and let T3(n) be defined by

Then

b) Let d(1,1,1, 2, 2, 2; n~ denote the divisor function

d(1, 1, 1, 2, 2, 2; n) = #{(~1,... n6) : = n~

and let t3(n~ be defined by
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Then

Proof. It is known that

hence (7) and (8) follows at once.

LEMMA 2 (Vogts [11]). Let r &#x3E; 2 and al, , .. , ar be reat numbers with

and Ar := ai + ... + ar . Let

Then

where the main term H(a; x) is given by

For the error term A(a; x) we have the representation

where S(u; x) is defined by

with the conditions o f summation

In (10) the notations u E 7r(a) means that u runs over all permutations
7r(a) of a. In the condition of summation the notation 

means that ni  ni+l for ui = ai, aj and i  j and ni  ni+l
otherwise.

Remark. The representation (9) for the main term holds if a,  a2  ... 

ar. However, in cases of some equalities we can take the limit values (see
Kratzel [5]).
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LEMMA 3 (Kr6tzel [7]). Let N := (~,N2,... , = 1,... ,
r -1) and 81,82, ... , positive numbers. Let S(u, N; x) be defined
by 

I ~, I

i

with the condition o f summation

For the numbers Ni are valid the inequalities
. . -. -

Assume that
- - ,

for each permutations of (aI, ... , ar). Then the estimate
.

holds with N2 ar- I ... x for all permutations u.

LEMMA 4 (Menzer, Krétzel [5]). Let S(u, N; x) be defined by (12), then we
have

Remark. The first both formulas (13) and (14) was proved by the author by
applying two results of three-dimensional sums in [9]. The third formula
(15) was proved by Kretzel [5] by applying a result of two-dimensional
exponential sums.

3. Estimates for T (x) and W (x).

According to the formulas (7) and (8) of Lemma 1 one can see that in or-
der to establish estimates for T (x) and it is necessary to know the as-

ymptotic behaviour of the counting functions D(1, ~, 2, 2; x) and

D(1, l,1, 2, 2, 2; x), respectively. Hence, we prove first two theorems in-
cluding asymptotic results for these functions.
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THEOREM 1. For the remainder term ~(1,1, 2, 2; x) holds the estimate

Proof. We start with the formula (10) and put a = (1,1, 2, 2). This yields

where S(u; x) is defined in the sense of (11). Now instead of function S (u; x)
we take the special function which is defined by formula (12).
All sums S (u, N; x), where u E 7r (1, 1, 2, 2) are divided into two subsums
corresponding to n2  z and z  n2, where z is a suitable value, which is
defined later. In the first case n2 &#x3E; z we take formula (13) and obtain by
using

and Lemma 3 the estimate

for all permutations u E 7r(l, 1,2,2).

In the second case n2  z we use the formula (14). By applying

and Lemma 3 we get the estimate

for all permutations u E ir (1, 1, 2, 2).

Now we compare the estimates (17) and (18) and get for z the value

This completes the proof of (16).
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THEOREM 2. Let a = (1,1, l, 2, 2, 2) and let Hi (x) (i = l, ... 6) be define
by

Then the representation

ho lds with

where S(u; x) is defined by (11) zuith r = 6.
Moreover, zve have

Proof. We use Lemma 2 with al - a2 = a3 = 1 , c~4 = a5 = a6 = 2

and A6 = 9. We obtain by simple calculations for the main term H(a- x)
6

the representation H(a; x~ _ ~ Hi (x) - Now, we apply the formula (15) of
~ 

2.=1 

Lemma 4 and substitute nl, n2, n3 by n3, n4, n5. After that we introduce
two new variables of summation nl, n2 and sum trivially over them. Hence
we get the following estimate



162

and we have by using Lemma 3

for all permutations u E 7r(1, 1,1,2,2,2). From this estimate it is easily
seen that

- - -

Therefore, we can use the inequalities

in (27). Then

and (25) follows immediately. ,

THEOREM 3. Let Cl, C2, C3, C4 be defcned by

Then

Proof. From Theorem 2 of [10] and Theorem 1 our result follows at once.
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THEOREM 4. Let (i = l, ... , 6) be defined by

B‘ - / J

where (i = 1, ... , 6) are (19) to (24). Then
1

Proof. We apply equation (8) and obtain

with a = ( 1,1, l, 2, 2, 2) . Now, we use our Theorem 2.

It is easily seen that

00 ..

Since the Dirichlet series are absolutely convergent for u &#x3E; 1/3,
the estimate (38) follows immediately.
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